DOI QR코드

DOI QR Code

Six newly recorded species of epilithic cyanobacteria isolated in Korea

  • Hye-Ryeung Wang (Department of Life Science, College of Natural Science, Kyonggi University) ;
  • Ji-Ho Song (Department of Life Science, College of Natural Science, Kyonggi University) ;
  • Nam-Ju Lee (Department of Life Science, College of Natural Science, Kyonggi University) ;
  • Do-Hyun Kim (Department of Life Science, College of Natural Science, Kyonggi University) ;
  • So-Won Kim (Department of Life Science, College of Natural Science, Kyonggi University) ;
  • Ok-Min Lee (Department of Life Science, College of Natural Science, Kyonggi University)
  • Received : 2023.06.29
  • Accepted : 2023.11.27
  • Published : 2024.02.28

Abstract

In this study, 11 strains of epilithic cyanobacteria belonging to six unrecorded species in Korea were isolated from gravel submerged in freshwater of seven collection sites in Korea. The morphological characteristics of the six species isolated in this study were consistent with the type strain of each species, and the similarity of the 16S rRNA gene sequences with the type strain of each species were 98.8-100%. In the phylogenetic tree using the 16S rRNA gene sequences, the 11 strains of these six species formed the same cluster as the strains of each species. The habitat of each previously reported species is mainly the soil surface, but all Korean strains appeared from the gravel submerged in freshwater. As a result of the morphological, ecological, and molecular analyses, these six species of cyanobacteria were identified as Geminocystis papuanica, Allocoleopsis franciscana, Ancylothrix terrestris, Klisinema persicum, Scytolyngbya timoleontis, and Shackletoniella antarctica, which were added as newly recorded species in Korea.

Keywords

Acknowledgement

This work was supported by a grant from the Nakdonggang National Institute of Biological Resources (NNIBR) (NNIBR2016284, NNIBR2017287) and the National Institute of Biological Resources (NIBR) (NIBR201902114, NIBR202203204), funded by Korea Ministry of Environment(MOE).

References

  1. Anagnostidis, K. and J. Komarek. 1988. Modern approach to the classification system of the cyanophytes 3: Oscillatoriales. Algological Studies 50(53):327-472.
  2. Bae, E.H., J.S. Kang and C.S. Park. 2020. New report on cyanophyte in Korea, Microseira wollei (Farlow ex Gomont) GB McGregor and Sendall ex Kennis (Oscillatoriaceae). Journal of Species Research 9(3):210-217. https://doi.org/10.12651/JSR.2020.9.3.210
  3. Bagchi, S.N., N. Dubey and P. Singh. 2017. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov. International Journal of Systematic and Evolutionary Microbiology 67(9):3329-3338. https://doi.org/10.1099/ijsem.0.002112
  4. Casamatta, D.A., M.L. Vis and R.G. Sheath. 2003. Cryptic species in cyanobacterial systematics: a case study of Phormidium retzii(Oscillatoriales) using RAPD molecular markers and 16S rDNA sequence data. Aquatic Botany 77(4):295-309. https://doi.org/10.1016/j.aquabot.2003.08.005
  5. Dvorak, P., E. Jahodarova, P. Hasler, E. Gusev and A. Poulickova. 2015. A new tropical cyanobacterium Pinocchia polymorpha gen. et sp. nov. derived from the genus Pseudanabaena. Fottea 15(1):113-120. https://doi.org/10.5507/fot.2015.010
  6. Engene, N., E.C. Rottacker, J. Kastovsky, T. Byrum, H. Choi, M.H. Ellisman, J. Komarek and W.H. Gerwick. 2012. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. International Journal of Systematic and Evolutionary Microbiology 62(5):1171-1178. https://doi.org/10.1099/ijs.0.033761-0
  7. Fernandes, V.M.C., A. Giraldo-Silva, D. Roush and F. Garcia-Pichel. 2021. Coleofasciculaceae, a monophyletic home for the Microcoleus steenstrupii complex and other desiccation-tolerant filamentous cyanobacteria. Journal of Phycology 57(5):1563-1579. https://doi.org/10.1111/jpy.13199
  8. Guiry, M.D. and G.M. Guiry. 2023. AlgaeBase. World-wide electronic publication. National University of Ireland, Galway [Available from: http://www.algaebase.org, accessed 03 November 2023].
  9. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98.
  10. Hasler, P., D. Casamatta, P. Dvorak and A. Poulickova. 2017. Jacksonvillea apiculata (Oscillatoriales, Cyanobacteria) gen. and sp. nov.: a new genus of filamentous, epipsamic cyanobacteria from North Florida. Phycologia 56(3):284- 295. https://doi.org/10.2216/16.62.1
  11. Hasler, P., P. Dvorak, J.R. Johansen, M. Kitner, V. Ondrej and A. Poulickova. 2012. Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). Fottea 12(2):341-356. https://doi.org/10.5507/fot.2012.024
  12. Heidari, F., J. Zima, H. Riahi and T. Hauer. 2018. New simple trichal cyanobacterial taxa isolated from radioactive thermal springs. Fottea 18(2):137-149. https://doi.org/10.5507/fot.2017.024
  13. Huelsenbeck, J.P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  14. Jaiswal, T.P., S. Chakraborty, P. Singh, A.K. Mishra and S.S. Singh. 2021. Description of hot spring dwelling Mastigocladus ambikapurensis sp. nov., using a polyphasic approach. Plant Systematics and Evolution 307:1-12. https://doi.org/10.1007/s00606-020-01732-1
  15. Jeong, J.Y., S.H. Lee, M.R. Yun, S.E. Oh, J.S. Kim, H.C. Moon, C.W. Hwang and H.D. Park. 2019. First isolation report and molecular phylogenetic characteristics of Raphidiopsis raciborskii in South Korea. The Microbiological Society of Korea 55(4):350-359.
  16. Johansen, J.R. and D.A. Casamatta. 2005. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological Studies 117(1):71-93.
  17. Kaplan, A., M. Harel, R.N. Kaplan-Levy, O. Hadas, A. Sukenik and E. Dittmann. 2012. The languages spoken in the water body (or the biological role of cyanobacterial toxins). Frontiers in Microbiology 3:138.
  18. Kiel, G. and C.C. Gaylarde. 2006. Bacterial diversity in biofilms on external surfaces of historic buildings in Porto Alegre. World Journal of Microbiology and Biotechnology 22(3):293-297. https://doi.org/10.1007/s11274-005-9035-y
  19. Kim, D.H., N.J. Lee, J.H. Kim, E.C. Yang and O.M. Lee. 2022a. Three New Plectolyngbya Species(Leptolyngbyaceae, Cyanobacteria) Isolated from Rocks and Saltern of the Republic of Korea. Diversity 14(12):1013.
  20. Kim, M.C., H.S. Oh, S.C. Park and J.S. Chun. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology 64(2):346-351. https://doi.org/10.1099/ijs.0.059774-0
  21. Kim, S.W., N.J. Lee, D.H. Kim, J.H. Song, H.R. Wang and O.M. Lee. 2022b. Five newly recorded species of cyanobacteria in Korea. Journal of Species Research 11(4):296-309. https://doi.org/10.12651/JSR.2022.11.4.296
  22. Komarek, J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. European Journal of Phycology 51(3):346-353. https://doi.org/10.1080/09670262.2016.1163738
  23. Komarek, J., J. Kastovsky, J. Mares and J.R. Johansen. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86(4):295-335.
  24. Komarek, J. and K. Anagnostidis. 1998. Cyanoprokaryota. 1. Teil/1st Chroococcales. In: H. Ettl, G. Gartner, H. Heynig, and D. Mollengauer (eds.), Susswasserflora von Mitteleuropa vol. 19/1, Spektrum Akademischer Verlag, Heidelberg. pp. 1-548.
  25. Komarek, J. and K. Anagnostidis. 2005. Cyanoprokaryota. 2. Teil/2nd Oscillatoriales. In: B. Budel, L. Krienitz, G. Gartner and M. Schagerl (eds.), Susswasserflora von Mitteleuropa vol. 19/2, Elsevier/Spektrum, Heidelberg. pp. 1-759.
  26. Korelusova, J., J. Kastovsky and J. Komarek. 2009. Heterogeneity of the cyanobacterial genus Synechocystis and description of a new genus, Geminocystis. Journal of Phycology 45(4):928-937. https://doi.org/10.1111/j.1529-8817.2009.00701.x
  27. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
  28. Lee, N.J., D.H. Kim, J.H. Kim, A.S. Lim and O.M. Lee. 2023. Trichotorquatus salinus sp. nov. (Oculatellaceae, Cyanobacteria) from a Saltern of Gomso, Republic of Korea. Diversity 15(1):65.
  29. Lee, N.J., Y.S. Seo, J.S. Ki and O.M. Lee. 2019. A study of newly recorded genus and species for aerial cyanobacteria Wilmottia murrayi (Oscillatoriales, Cyanobacteria) in Korea. Korean Journal of Environmental Biology 37(3): 260-267. https://doi.org/10.11626/KJEB.2019.37.3.260
  30. Lee, O.M. 2022. Newly recorded genera and species, Pantanalinema rosaneae and Alkalinema pantanalense (Leptolyngbyaceae, Cyanobacteria) isolated in Korea. Journal of Species Research 11(1):10-21.
  31. Mai, T., J.R. Johansen, N. Pietrasiak, M. Bohunicka and M.P. Martin. 2018. Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 365(1):1-59. https://doi.org/10.11646/phytotaxa.365.1.1
  32. Martins, M.D., J. Rigonato, S.R. Taboga and L.H.Z. Branco. 2016. Proposal of Ancylothrix gen. nov., a new genus of Phormidiaceae (Cyanobacteria, Oscillatoriales) based on a polyphasic approach. International Journal of Systematic and Evolutionary Microbiology 66(6):2396-2405. https://doi.org/10.1099/ijsem.0.001044
  33. Muhlsteinova, R., J.R. Johansen, N. Pietrasiak, M.P. Martin, K. Osorio-Santos and S.D. Warren. 2014. Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus. Phytotaxa 163(5):241-261. https://doi.org/10.11646/phytotaxa.163.5.1
  34. National Institute of Biological Resources (NIBR). 2023. National List of Species of Korea (2022) [Available from: http://kbr.go.kr, accessed 29 June 2023].
  35. Neilan, B.A., D. Jacobs, T. Del Dot, L.L. Blackall, P.R. Hawkins, P.T. Cox and A.E. Goodman. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Internatiosnal Journal of Systematic and Evolutionary Microbiology 47(3):693-697. https://doi.org/10.1099/00207713-47-3-693
  36. Page, R.D.M. 1996. Tree View: An application to display phylogenetic trees on personal computers. Bioinformatics 12(4):357-358. https://doi.org/10.1093/bioinformatics/12.4.357
  37. Radzi, R., F. Merican, P. Broady, P. Convey, N. Muangmai, W.M.W. Omar and S. Lavoue. 2021. First record of the cyanobacterial genus Wilmottia (Coleofasciculaceae, Oscillatoriales) from the South Orkney Islands (Antarctica). Algae 36(2):111-121. https://doi.org/10.4490/algae.2021.36.5.6
  38. Rastogi, R.P., R.P. Sinha and A. Incharoensakdi. 2014. The cyanotoxin-microcystins: current overview. Reviews in Environmental Science and Bio/Technology 13:215-249. https://doi.org/10.1007/s11157-014-9334-6
  39. Schaffner, J.H. 1922. The classification of plants. XII. Ohio Journal of Science 22(5):129-139.
  40. Sciuto, K. and I. Moro. 2016. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S-23S ITS region. Molecular Phylogenetics and Evolution 105:15-35. https://doi.org/10.1016/j.ympev.2016.08.010
  41. Segawa, T., T. Yonezawa, A. Edwards, A. Akiyoshi, S. Tanaka, J. Uetake, T. Irvine-Fynn, K. Fukui, Z. Li and N. Takeuchi. 2017. Biogeography of cryoconite forming cyanobacteria on polar and Asian glaciers. Journal of Biogeography 44(12):2849-2861. https://doi.org/10.1111/jbi.13089
  42. Song, G., Y. Jiang and R. Li. 2015. Scytolyngbya timoleontis, gen. et sp. nov.(Leptolyngbyaceae, Cyanobacteria): a novel false branching cyanobacteria from China. Phytotaxa 224(1):72-84. https://doi.org/10.11646/phytotaxa.224.1.5
  43. Song, J.H., D.H. Kim, N.J. Lee, S.W. Kim, H.R. Wang and O.M. Lee. 2022. Four newly recorded species of planktonic cyanobacteria (Oscillatoriales, Cyanobacteria) in Korea. Journal of Species Research 11(4):321-329. https://doi.org/10.12651/JSR.2022.11.4.321
  44. Song, M.A. and O.M. Lee. 2017. A study of six newly recorded species of cyanobacteria (Cyanophyceae, Cyanophyta) in Korea. Journal of Species Research 6(2):154-162. https://doi.org/10.12651/JSR.2017.6.2.154
  45. Stam, W.T. 1978. A taxonomic study of a number of blue green algal strains(Cyanophyceae) based on morphology, growth and deoxyribonucleic acid homologies. Rijksunversiteit. Groningen. p. 116.
  46. Stam, W.T. 1980. Relationships between a number of filamentous blue-green algal strains (Cyanophyceae) revealed by DNA-DNA hybridization. Algological Studies/Archiv fur Hydrobiologie supple., 25:351-374.
  47. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  48. Stanier, R.Y., R. Kunisawa, M. Mandel and G. Cohen-Bazire. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews 35(2):171-205. https://doi.org/10.1128/br.35.2.171-205.1971
  49. Strunecky, O., A.P. Ivanova and J. Mares. 2023. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. Journal of Phycology 59 (1):12-51. https://doi.org/10.1111/jpy.13304
  50. Strunecky, O., J. Komarek, J.R. Johansen, A. Lukesova and J. Elster. 2013. Molecular and morphological criteria for revision of the genus Microcoleus(Oscillatoriales, Cyanobacteria). Journal of Phycology 49(6):1167-1180. https://doi.org/10.1111/jpy.12128
  51. Strunecky, O., L. Raabova, A. Bernardova, A.P. Ivanova, A. Semanova, J. Crossley and D. Kaftan. 2020. Diversity of cyanobacteria at the Alaska North Slope with description of two new genera: Gibliniella and Shackletoniella. FEMS Microbiology Ecology 96(3):1-20. https://doi.org/10.1093/femsec/fiz189
  52. Tuji, A., H. Yamaguchi, T. Kataoka, M. Sato, T. Sano and Y. Niiyama. 2021. Annamia dubia sp. nov. with a description of a new family, Geminocystaceae fam. nov.(Cyanobacteria). Fottea 21(1):100-109. https://doi.org/10.5507/fot.2021.003
  53. West, W. and G.S. West. 1911. Part VII. Freshwater algae. In: J. Murray (ed.), British Antarctic Expedition 1907-9 vol. I Biology, W. Heinemann, London. pp. 263-298.
  54. Whitton, B.A. and M. Potts. 2012. Introduction to the cyanobacteria. In: B.A. Whitton (ed.), Ecology of cyanobacteria II: their diversity in space and time. Springer Science and Business Media, Berlin. pp. 1-13.
  55. Yim, B.C., H.C. Jung, S.D. Bang and O.M. Lee. 2018. A study of nine unrecorded species of planktonic cyanobacteria (Cyanophyceae, Cyanophyta) in Korea. Korean Journal of Environmental Biology 36(3):299-307. https://doi.org/10.11626/KJEB.2018.36.3.299