DOI QR코드

DOI QR Code

Study on the Improvement of Efficiency in Dehydration Process of LNG Liquefaction Plant Using Molecular Sieve

분자체를 이용한 LNG 액화 플랜트 탈수 공정의 효율성 향상에 관한 연구

  • JONGHWA PARK (Plants Division, DAEWOO E&C) ;
  • DONSANG YU (Plants Division, DAEWOO E&C) ;
  • DAEMYEONG CHO (Graduate School of Technology & Innovation management, Hanyang University)
  • 박종화 (대우건설 플랜트본부) ;
  • 유돈상 (대우건설 플랜트본부) ;
  • 조대명 (한양대학교 기술경영전문대학원)
  • Received : 2024.01.15
  • Accepted : 2024.02.22
  • Published : 2024.02.28

Abstract

The natural gas dehydration process plays a central role in liquefying LNG. This study proposes two natural gas dehydration process systems applicable to liquefied natural gas (LNG) liquefaction plants, and compares and analyzes energy optimization measures through simulation. The fuel gas from feed stream (FFF) case, which requires additional equipment for gas circulation, disadvantages are design capacity and increased energy. On the other hand, the end flash gas (EFG) case has advantages such as low initial investment costs and no need for compressors, but has downsides such as increased power energy and the use of gas with different components. According to the process simulation results, the required energy is 33.22 MW for the FFF case and 32.86 MW for the EFG case, confirming 1.1% energy savings per unit time in the EFG case. Therefore, in terms of design pressure, capacity, device configuration, and required energy, the EFG case is relatively advantageous. However, further research is needed on the impact of changes in the composition of regenerated gas on the liquefaction process and the fuel gas system.

Keywords

References

  1. Noh, "Estimation of the ammonia refrigeration cycle using LNG cold heat", Journal of Hydrogen and New Energy, Vol. 29, No. 4, 2018, pp. 357-362, doi: https://doi.org/10.7316/KHNES.2018.29.4.357.
  2. C. A. Koh, R. E. Westacott, W. Zhang, K. Hirachand, J. L. Creek, and A. K. Soper, "Mechanisms of gas hydrate formation and inhibition", Fluid Phase Equilibria, Vol. 194-197, 2002, pp. 143-151, doi: https://doi.org/10.1016/S0378-3812(01)00660-4.
  3. A. N. Rouzbahani, M. Bahmani, J. Shariati, T. Tohidian, and M. R. Rahimpour, "Simulation, optimization, and sensitivity analysis of a natural gas dehydration unit", Journal of Natural Gas Science and Engineering, Vol. 21, 2014, pp. 159-169, doi: https://doi.org/10.1016/j.jngse.2014.07.025.
  4. H. A. El Mawgoud, T. M. Elshiekh, and S. A. Khalil, "Process simulation for revamping of a dehydration gas plant", Egyptian Journal of Petroleum, Vol. 24, No. 4, 2015, pp. 475-482, doi: https://doi.org/10.1016/j.ejpe.2015.01.001.
  5. M. G. R. S. Santos, L. M. S. Correia, J. L. de Medeiros, and O. de Q. F. Araujo, "Natural gas dehydration by molecular sieve in offshore plants: impact of increasing carbon dioxide content", Energy Conversion and Management, Vol. 149, 2017, pp. 760-773, doi: https://doi.org/10.1016/j.enconman.2017.03.005.
  6. C. Zou, P. Zhao, M. Wang, D. Liu, H. Wang, and Z. Wen, "Failure analysis and faults diagnosis of molecular sieve in natural gas dehydration", Engineering Failure Analysis, Vol. 34, 2013, pp. 115-120, doi: https://doi.org/10.1016/j.engfailanal.2013.07.031.
  7. Y. Wang, H. Hu, and Z. Li, "Synthesis of a loess-based 4A molecular sieve and its application performance in detergents", Inorganica Chimica Acta, Vol. 559, 2024, pp. 121798, doi: https://doi.org/10.1016/j.ica.2023.121798.
  8. P. Wexler, M. Abdollahi, S. Gad, H. Greim, M. Gulumian, E. I. Iatrou, D. Miguez, A. Mohapatra, S. D. Ray, J. Tarazona, A. Tsatsakis, and T. Weigand, "Encyclopedia of toxicology", 4th ed, Academic Press, USA, 2023, pp. 871-892, doi: https://doi.org/10.1016/B978-0-12-824315-2.00602-3.
  9. E. Gabrus, J. Nastaj, P. Tabero, and T. Aleksandrzak, "Experimental studies on 3A and 4A zeolite molecular sieves regeneration in TSA process: aliphatic alcohols dewatering-water desorption", Chemical Engineering Journal, Vol. 259, 2015, pp. 232-242, doi: https://doi.org/10.1016/j.cej.2014.07.108.
  10. L. Chen, J. E, Y. Ma, Y. Deng, and D. Han, "Investigation on the influence of modified zeolite molecular sieve on the hydrocarbon adsorbent and adsorption performance during cold-start conditions based on Monte Carlo simulation and grey relational analysis", Fuel, Vol. 319, 2022, pp. 123846, doi: https://doi.org/10.1016/j.fuel.2022.123846.
  11. D. Kim, T. Kim, D. Lee, Y. Kim, K. Ahn, Y. Bae, J. Park, and Y. Kim, "Study on electrochemical hydrogen separation of hydrogen and nitrogen mixture gas", Journal of Hydrogen and New Energy, Vol. 34, No. 2, 2023, pp. 149-154, doi:https://doi.org/10.7316/JHNE.2023.34.2.149.
  12. S. T. Kim, "Hydrogen refining technology using catalytic reaction", News & Information for Chemical Engineers, Vol. 40, No. 3, 2022, pp. 315-320. Retrieved from https://kiss.kstudy.com/Detail/Ar?key=3949665.
  13. C. H. Chung, "The purification characteristics of by-product hydrogen gas in petrochemical NCC process using [Doctoral dissertation]", Gwangju: Chonnam National University; 2021, pp. 89-100.
  14. A. Aspelund, T. Gundersen, J. Myklebust, M. P. Nowak, and A. Tomasgard, "An optimization-simulation model for a simple LNG process", Computers & Chemical Engineering, Vol. 34, No. 10, 2010, pp. 1606-1617, doi: https://doi.org/10.1016/j.compchemeng.2009.10.018.
  15. D. Cho, J. Park, and D. Yu, "Optimization of ammonia decomposition and hydrogen purification process focusing on ammonia decomposition rate", Journal of Hydrogen and New Energy, Vol. 34, No. 6, 2023, pp. 594-600, doi: https://doi.org/10.7316/JHNE.2023.34.6.594.