Acknowledgement
This study was supported by the National Natural Science Foundation of China (Grant No. 52308525), 2024 Open Project of Failure Mechanics and Engineering Disaster Prevention, Key Lab of Sichuan Province (FMEDP202402), Chunhui Plan of Cooperative Research Project of Ministry of Education (Grant No. HZKY20220228), Science and Technology Foundation of Gansu Province (Grant No. 23JRRA801), and Red Willow Excellent Young Talent Support Plan of Lanzhou University of Technology.
References
- Banerji, P., Murudi, M., Shah, A.H. and Popplewell, N. (2000), "Tuned liquid dampers for controlling earthquake response of structures", Earthq. Eng. Struct. Dyn., 29(5), 587-602. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5<587::AID-EQE926>3.0.CO;2-I
- Bauer, H.F. (1984), "Oscillations of immiscible liquids in a rectangular container - A new damper for excited structures", J. Sound Vib., 93(1), 117-133. https://doi.org/10.1016/0022-460x(84)90354-7
- Byrd, R.H., Gilbert, J.C. and Nocedal, J. (2000), "A trust region method based on interior point techniques for nonlinear programming", Mathe. Programm., 89(1), 149-185. https://doi.org/10.1007/PL00011391
- Chang, C.C. and Qu, W.L. (1998), "Unified dynamic absorber design formulas for wind-induced vibration control of tall buildings", Struct. Des. Tall Build., 7(2), 147-166. https://doi.org/10.1002/(SICI)1099-1794(199806)7:2<147::AID-TAL107>3.0.CO;2-3
- Chen, Q., Zhao, Z., Xia, Y., Pan, C., Luo, H. and Zhang, R. (2019), "Comfort based floor design employing tuned inerter mass system", J. Sound Vib., 458, 143-157. https://doi.org/10.1016/j.jsv.2019.06.019
- Crandall, S.H. and Mark, W.D. (1963), Random Vibration in Mechanical System.
- Davenport, A.G. (1967), "Gust loading factors", J. Struct. Div., 93(3), 11-34. https://doi.org/10.1061/JSDEAG.0001692
- Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Annual Rev. Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015
- Elias, S. and Matsagar, V. (2018), "Wind response control of tall buildings with a tuned mass damper", J. Build. Eng., 15, 51-60. https://doi.org/10.1016/j.jobe.2017.11.005
- ETABS (2021), Building analysis and design; from https://www.csiamerica.com/products/etabs
- Fediw, A.A., Isyumov, N. and Vickery, B.J. (1995), "Performance of a tuned sloshing water damper", J. Wind Eng. Industr. Aerodyn., 57(2), 237-247. https://doi.org/10.1016/0167-6105(94)00107-O
- Furtmuller, T., Di Matteo, A., Adam, C. and Pirrotta, A. (2019), "Base-isolated structure equipped with tuned liquid column damper: An experimental study", Mech. Syst. Signal Process., 116, 816-831. https://doi.org/10.1016/j.ymssp.2018.06.048
- Gaur, S., Elias, S., Hobbel, T., Matsagar, V.A. and Thiele, K. (2020), "Tuned mass dampers in wind response control of wind turbine with soil-structure interaction", Soil Dyn. Earthq. Eng., 132, 106071. https://doi.org/10.1016/j.soildyn.2020.106071
- Hu, X., Zhao, Z., Yang, K., Liao, W. and Chen, Q. (2023a), "Novel triple friction pendulum-tuned liquid damper for the wind-induced vibration control of airport control towers", Thin-Wall. Struct., 182, 110337. https://doi.org/10.1016/j.tws.2022.110337
- Hu, X., Zhao, Z., Zhang, R., Yang, K., Chen, Q. and Weng, D. (2023b), "Seismic resilient design and negative stiffness-assisted nonlinear isolation system for adjacent non-coaxial buildings linked by corridors", Soil Dyn. Earthq. Eng., 175, 108227. https://doi.org/10.1016/j.soildyn.2023.108227
- Huang, M.F., Chan, C.M. and Lou, W.J. (2012), "Optimal performance-based design of wind sensitive tall buildings considering uncertainties", Comput. Struct., 98-99, 7-16. https://doi.org/10.1016/j.compstruc.2012.01.012
- Islam, N.U. and Jangid, R.S. (2022), "Optimum parameters of tuned inerter damper for damped structures", J. Sound Vib., 537, 117218. https://doi.org/10.1016/j.jsv.2022.117218
- Jangid, R.S. and Banerji, P. (1998), "Effects of isolation damping on stochastic response of structures with nonlinear base isolators", Earthq. Spectra, 14(1), 95-114. https://doi.org/10.1193/1.1585990
- Jangid, R.S. and Datta, T.K. (1995), "Seismic behaviour of base-isolated buildings: A state-of-the art review", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 110(2), 186-203. https://doi.org/10.1680/istbu.1995.27599
- Kareem, A. (2020), "Emerging frontiers in wind engineering: Computing, stochastics, machine learning and beyond", J. Wind Eng. Industr. Aerodyn., 206, 104320. https://doi.org/10.1016/j.jweia.2020.104320
- Lee, C.S., Love, J.S., Haskett, T.C. and Robinson, J.K. (2021), "Concept design of a parallel-type tuned mass damper-tuned sloshing damper system for building motion control in wind", Int. J. High-Rise Build., 10(2), 93-97. https://doi.org/10.21022/IJHRB.2021.10.2.93
- Love, J.S. and Tait, M.J. (2010), "Nonlinear simulation of a tuned liquid damper with damping screens using a modal expansion technique", J. Fluids Struct., 26(7), 1058-1077. https://doi.org/10.1016/j.jfluidstructs.2010.07.004
- Love, J.S., McNamara, K.P., Tait, M.J. and Haskett, T.C. (2019), "Series-type pendulum tuned mass damper-tuned sloshing damper", J. Vib. Acoust., 142(1). https://doi.org/10.1115/1.4044866
- Lu, Z., Wang, D., Masri, S.F. and Lu, X. (2016), "An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers", Smart Struct. Syst., Int. J., 18(1), 93-115. https://doi.org/10.12989/sss.2016.18.1.093
- Lu, L.Y., Lin, G.L., Chen, Y.S. and Hsiao, K.A. (2020a), "Vertical equipment isolation using piezoelectric inertial-type isolation system", Smart Struct. Syst., Int. J., 26(2), 195-211. https://doi.org/10.12989/sss.2020.26.2.195
- Lu, Z.Q., Shao, D., Fang, Z.W., Ding, H. and Chen, L.Q. (2020b), "Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate", J. Vib. Control, 26(9-10), 779-789. https://doi.org/10.1177/1077546319889815
- Luo, H., Zhang, R. and Weng, D. (2016), "Mitigation of liquid sloshing in storage tanks by using a hybrid control method", Soil Dyn. Earthq. Eng., 90, 183-195. https://doi.org/10.1016/j.soildyn.2016.08.037
- Marian, L. and Giaralis, A. (2017), "The tuned mass-damperinerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting", Smart Struct. Syst., Int. J., 19(6), 665-678. https://doi.org/10.12989/sss.2017.19.6.665
- Mensah, A.F. and Duenas-Osorio, L. (2014), "Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs)", Struct. Safety, 47, 78-86. https://doi.org/10.1016/j.strusafe.2013.08.004
- Niu, H., Chen, Z., Hua, X. and Zhang, W. (2018), "Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping", Smart Struct. Syst., Int. J., 22(6), 727-741. https://doi.org/10.12989/sss.2018.22.6.727
- Pandey, D.K., Sharma, M.K. and Mishra, S.K. (2019), "A compliant tuned liquid damper for controlling seismic vibration of short period structures", Mech. Syst. Signal Process., 132, 405-428. https://doi.org/10.1016/j.ymssp.2019.07.002
- Roy, A., Zhang, Z., Ghosh, A. and Basu, B. (2019), "On the nonlinear performance of a tuned sloshing damper under small amplitude excitation", J. Vib. Control, 25(21-22), 2695-2705. https://doi.org/10.1177/1077546319867232
- Ruiz, R.O., Lopez-Garcia, D. and Taflanidis, A.A. (2016), "Modeling and experimental validation of a new type of tuned liquid damper", Acta Mechanica, 227(11), 3275-3294. https://doi.org/10.1007/s00707-015-1536-7
- Sato, T. (1987), "Tuned sloshing damper", J. Wind Eng., 32, 67-68.
- Shanghai Research Institute of Materials (2018), Design Report on Energy Dissipation and Seismic Reduction of Building B of Heng Yu Financial Center; Shanghai Research Institute of Materials, Shanghai, China.
- Soong, T.T. and Spencer Jr., B.F. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X
- Sun, L.M. and Fujino, Y. (1994), "A semi-analytical model for tuned liquid damper (TLD) with wave breaking", J. Fluids Struct., 8(5), 471-488. https://doi.org/10.1006/jfls.1994.1023
- Suthar, S.J. and Jangid, R.S. (2021a), "Design of tuned liquid sloshing dampers using nonlinear constraint optimization for across-wind response control of benchmark tall building", Structures. 33, 2675-2688. https://doi.org/10.1016/j.istruc.2021.05.059
- Suthar, S.J. and Jangid, R.S. (2021b), "Multiple tuned liquid sloshing dampers for across-wind response control of benchmark tall building", Innov. Infrastr. Solut., 7(1), 55. https://doi.org/10.1007/s41062-021-00650-6
- Suthar, S.J. and Jangid, R.S. (2022), "Optimal design of tuned liquid column damper for wind-induced response control of benchmark tall building", J. Vib. Eng. Technol., 10(8), 2935-2945. https://doi.org/10.1007/s42417-022-00528-6
- Tait, M.J. (2008), "Modelling and preliminary design of a structure-TLD system", Eng. Struct., 30(10), 2644-2655. https://doi.org/10.1016/j.engstruct.2008.02.017
- Tait, M.J., Isyumov, N. and El Damatty, A.A. (2008), "Performance of tuned liquid dampers", J. Eng. Mech., 134(5), 417-427. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:5(417)
- Tamura, Y., Fujii, K., Ohtsuki, T., Wakahara, T. and Kohsaka, R. (1995), "Effectiveness of tuned liquid dampers under wind excitation", Eng. Struct., 17(9), 609-621. https://doi.org/10.1016/0141-0296(95)00031-2
- Tanveer, M., Usman, M., Khan, I.U., Farooq, S.H. and Hanif, A. (2020), "Material optimization of tuned liquid column ball damper (TLCBD) for the vibration control of multi-storey structure using various liquid and ball densities", J. Build. Eng., 32, 101742. https://doi.org/10.1016/j.jobe.2020.101742
- Veletsos, A.S. (1984), "Seismic response and design of liquid storage tanks", In: Guidelines for the seismic design of oil and gas pipeline systems, pp. 255-370.
- Wang, Q., Qiao, H., De Domenico, D., Zhu, Z. and Tang, Y. (2021), "Seismic performance of optimal Multi-Tuned Liquid Column Damper-Inerter (MTLCDI) applied to adjacent high-rise buildings", Soil Dyn. Earthq. Eng., 143, 106653. https://doi.org/10.1016/j.soildyn.2021.106653
- Yalla, S.K. and Kareem, A. (2000), "Optimum absorber parameters for tuned liquid column dampers", J. Struct. Eng., 126(8), 906-915. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(906)
- Yalla, S.K., Kareem, A. and Kantor, J.C. (2001), "Semi-active tuned liquid column dampers for vibration control of structures", Eng. Struct., 23(11), 1469-1479. https://doi.org/10.1016/S0141-0296(01)00047-5
- Yucel, M., Bekdas, G., Nigdeli, S.M. and Sevgen, S. (2019), "Estimation of optimum tuned mass damper parameters via machine learning", J. Build. Eng., 26, 100847. https://doi.org/10.1016/j.jobe.2019.100847
- Zhao, Z., Zhang, R., Jiang, Y. and Pan, C. (2019), "A tuned liquid inerter system for vibration control", Int. J. Mech. Sci., 164, 105171. https://doi.org/10.1016/j.ijmecsci.2019.105171
- Zhao, Z., Chen, Q., Zhang, R., Pan, C. and Jiang, Y. (2020), "Energy dissipation mechanism of inerter systems", Int. J. Mech. Sci., 184, 105845. https://doi.org/10.1016/j.ijmecsci.2020.105845
- Zhao, Z., Zhang, R., Wierschem, N.E., Jiang, Y. and Pan, C. (2021), "Displacement mitigation-oriented design and mechanism for inerter-based isolation system", J. Vib. Control, 27(17-18), 1991-2003. https://doi.org/10.1177/1077546320951662
- Zhao, Z., Wang, Y., Hu, X. and Weng, D. (2022), "Seismic performance upgrading of containment structures using a negative-stiffness amplification system", Eng. Struct., 262, 114394. https://doi.org/10.1016/j.engstruct.2022.114394
- Zhao, Z., Chen, Q., Hu, X. and Zhang, R. (2023), "Enhanced energy dissipation benefit of negative stiffness amplifying dampers", Int. J. Mech. Sci., 240, 107934. https://doi.org/10.1016/j.ijmecsci.2022.107934