DOI QR코드

DOI QR Code

Serviceability-oriented analytical design of isolated liquid damper for the wind-induced vibration control of high-rise buildings

  • Zhipeng Zhao (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Xiuyan Hu (School of Urban Construction and Safety Engineering, Shanghai Institute of Technology) ;
  • Cong Liao (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Na Hong (Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology) ;
  • Yuanchen Tang (Department of Disaster Mitigation for Structures, Tongji University)
  • Received : 2022.06.28
  • Accepted : 2023.12.11
  • Published : 2024.01.25

Abstract

The effectiveness of conventional tuned liquid dampers (TLDs) in controlling the wind-induced response of tall flexible structures has been indicated. However, the impaired control effect in the detuning condition or a considerably high mass cost of liquid may be incurred in ensuring the high-level serviceability. To provide an efficient TLD-based solution for wind-induced vibration control, this study proposes a serviceability-oriented optimal design method for isolated TLDs (ILDs) and derives analytical design formulae. The ILD is implemented by mounting the TLD on the linear isolators. Stochastic response analysis is performed for the ILD-equipped structure subjected to stochastic wind and white noise, and the results are considered to derive the closed-form responses. Correspondingly, an extensive parametric analysis is conducted to clarify a serviceability-oriented optimal design framework by incorporating the comfort demand. The obtained results show that the high-level serviceability demand can be satisfied by the ILD based on the proposed optimal design framework. Analytical design formulae can be preliminarily adopted to ensure the target serviceability demand while enhancing the structural displacement performance to increase the safety level. Compared with conventional TLD systems, the ILD exhibits higher effectiveness and a larger frequency bandwidth for wind-induced vibration control at a small mass ratio.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (Grant No. 52308525), 2024 Open Project of Failure Mechanics and Engineering Disaster Prevention, Key Lab of Sichuan Province (FMEDP202402), Chunhui Plan of Cooperative Research Project of Ministry of Education (Grant No. HZKY20220228), Science and Technology Foundation of Gansu Province (Grant No. 23JRRA801), and Red Willow Excellent Young Talent Support Plan of Lanzhou University of Technology.

References

  1. Banerji, P., Murudi, M., Shah, A.H. and Popplewell, N. (2000), "Tuned liquid dampers for controlling earthquake response of structures", Earthq. Eng. Struct. Dyn., 29(5), 587-602. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5<587::AID-EQE926>3.0.CO;2-I
  2. Bauer, H.F. (1984), "Oscillations of immiscible liquids in a rectangular container - A new damper for excited structures", J. Sound Vib., 93(1), 117-133. https://doi.org/10.1016/0022-460x(84)90354-7
  3. Byrd, R.H., Gilbert, J.C. and Nocedal, J. (2000), "A trust region method based on interior point techniques for nonlinear programming", Mathe. Programm., 89(1), 149-185. https://doi.org/10.1007/PL00011391
  4. Chang, C.C. and Qu, W.L. (1998), "Unified dynamic absorber design formulas for wind-induced vibration control of tall buildings", Struct. Des. Tall Build., 7(2), 147-166. https://doi.org/10.1002/(SICI)1099-1794(199806)7:2<147::AID-TAL107>3.0.CO;2-3
  5. Chen, Q., Zhao, Z., Xia, Y., Pan, C., Luo, H. and Zhang, R. (2019), "Comfort based floor design employing tuned inerter mass system", J. Sound Vib., 458, 143-157. https://doi.org/10.1016/j.jsv.2019.06.019
  6. Crandall, S.H. and Mark, W.D. (1963), Random Vibration in Mechanical System.
  7. Davenport, A.G. (1967), "Gust loading factors", J. Struct. Div., 93(3), 11-34. https://doi.org/10.1061/JSDEAG.0001692
  8. Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Annual Rev. Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015
  9. Elias, S. and Matsagar, V. (2018), "Wind response control of tall buildings with a tuned mass damper", J. Build. Eng., 15, 51-60. https://doi.org/10.1016/j.jobe.2017.11.005
  10. ETABS (2021), Building analysis and design; from https://www.csiamerica.com/products/etabs
  11. Fediw, A.A., Isyumov, N. and Vickery, B.J. (1995), "Performance of a tuned sloshing water damper", J. Wind Eng. Industr. Aerodyn., 57(2), 237-247. https://doi.org/10.1016/0167-6105(94)00107-O
  12. Furtmuller, T., Di Matteo, A., Adam, C. and Pirrotta, A. (2019), "Base-isolated structure equipped with tuned liquid column damper: An experimental study", Mech. Syst. Signal Process., 116, 816-831. https://doi.org/10.1016/j.ymssp.2018.06.048
  13. Gaur, S., Elias, S., Hobbel, T., Matsagar, V.A. and Thiele, K. (2020), "Tuned mass dampers in wind response control of wind turbine with soil-structure interaction", Soil Dyn. Earthq. Eng., 132, 106071. https://doi.org/10.1016/j.soildyn.2020.106071
  14. Hu, X., Zhao, Z., Yang, K., Liao, W. and Chen, Q. (2023a), "Novel triple friction pendulum-tuned liquid damper for the wind-induced vibration control of airport control towers", Thin-Wall. Struct., 182, 110337. https://doi.org/10.1016/j.tws.2022.110337
  15. Hu, X., Zhao, Z., Zhang, R., Yang, K., Chen, Q. and Weng, D. (2023b), "Seismic resilient design and negative stiffness-assisted nonlinear isolation system for adjacent non-coaxial buildings linked by corridors", Soil Dyn. Earthq. Eng., 175, 108227. https://doi.org/10.1016/j.soildyn.2023.108227
  16. Huang, M.F., Chan, C.M. and Lou, W.J. (2012), "Optimal performance-based design of wind sensitive tall buildings considering uncertainties", Comput. Struct., 98-99, 7-16. https://doi.org/10.1016/j.compstruc.2012.01.012
  17. Islam, N.U. and Jangid, R.S. (2022), "Optimum parameters of tuned inerter damper for damped structures", J. Sound Vib., 537, 117218. https://doi.org/10.1016/j.jsv.2022.117218
  18. Jangid, R.S. and Banerji, P. (1998), "Effects of isolation damping on stochastic response of structures with nonlinear base isolators", Earthq. Spectra, 14(1), 95-114. https://doi.org/10.1193/1.1585990
  19. Jangid, R.S. and Datta, T.K. (1995), "Seismic behaviour of base-isolated buildings: A state-of-the art review", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 110(2), 186-203. https://doi.org/10.1680/istbu.1995.27599
  20. Kareem, A. (2020), "Emerging frontiers in wind engineering: Computing, stochastics, machine learning and beyond", J. Wind Eng. Industr. Aerodyn., 206, 104320. https://doi.org/10.1016/j.jweia.2020.104320
  21. Lee, C.S., Love, J.S., Haskett, T.C. and Robinson, J.K. (2021), "Concept design of a parallel-type tuned mass damper-tuned sloshing damper system for building motion control in wind", Int. J. High-Rise Build., 10(2), 93-97. https://doi.org/10.21022/IJHRB.2021.10.2.93
  22. Love, J.S. and Tait, M.J. (2010), "Nonlinear simulation of a tuned liquid damper with damping screens using a modal expansion technique", J. Fluids Struct., 26(7), 1058-1077. https://doi.org/10.1016/j.jfluidstructs.2010.07.004
  23. Love, J.S., McNamara, K.P., Tait, M.J. and Haskett, T.C. (2019), "Series-type pendulum tuned mass damper-tuned sloshing damper", J. Vib. Acoust., 142(1). https://doi.org/10.1115/1.4044866
  24. Lu, Z., Wang, D., Masri, S.F. and Lu, X. (2016), "An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers", Smart Struct. Syst., Int. J., 18(1), 93-115. https://doi.org/10.12989/sss.2016.18.1.093
  25. Lu, L.Y., Lin, G.L., Chen, Y.S. and Hsiao, K.A. (2020a), "Vertical equipment isolation using piezoelectric inertial-type isolation system", Smart Struct. Syst., Int. J., 26(2), 195-211. https://doi.org/10.12989/sss.2020.26.2.195
  26. Lu, Z.Q., Shao, D., Fang, Z.W., Ding, H. and Chen, L.Q. (2020b), "Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate", J. Vib. Control, 26(9-10), 779-789. https://doi.org/10.1177/1077546319889815
  27. Luo, H., Zhang, R. and Weng, D. (2016), "Mitigation of liquid sloshing in storage tanks by using a hybrid control method", Soil Dyn. Earthq. Eng., 90, 183-195. https://doi.org/10.1016/j.soildyn.2016.08.037
  28. Marian, L. and Giaralis, A. (2017), "The tuned mass-damperinerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting", Smart Struct. Syst., Int. J., 19(6), 665-678. https://doi.org/10.12989/sss.2017.19.6.665
  29. Mensah, A.F. and Duenas-Osorio, L. (2014), "Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs)", Struct. Safety, 47, 78-86. https://doi.org/10.1016/j.strusafe.2013.08.004
  30. Niu, H., Chen, Z., Hua, X. and Zhang, W. (2018), "Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping", Smart Struct. Syst., Int. J., 22(6), 727-741. https://doi.org/10.12989/sss.2018.22.6.727
  31. Pandey, D.K., Sharma, M.K. and Mishra, S.K. (2019), "A compliant tuned liquid damper for controlling seismic vibration of short period structures", Mech. Syst. Signal Process., 132, 405-428. https://doi.org/10.1016/j.ymssp.2019.07.002
  32. Roy, A., Zhang, Z., Ghosh, A. and Basu, B. (2019), "On the nonlinear performance of a tuned sloshing damper under small amplitude excitation", J. Vib. Control, 25(21-22), 2695-2705. https://doi.org/10.1177/1077546319867232
  33. Ruiz, R.O., Lopez-Garcia, D. and Taflanidis, A.A. (2016), "Modeling and experimental validation of a new type of tuned liquid damper", Acta Mechanica, 227(11), 3275-3294. https://doi.org/10.1007/s00707-015-1536-7
  34. Sato, T. (1987), "Tuned sloshing damper", J. Wind Eng., 32, 67-68.
  35. Shanghai Research Institute of Materials (2018), Design Report on Energy Dissipation and Seismic Reduction of Building B of Heng Yu Financial Center; Shanghai Research Institute of Materials, Shanghai, China.
  36. Soong, T.T. and Spencer Jr., B.F. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X
  37. Sun, L.M. and Fujino, Y. (1994), "A semi-analytical model for tuned liquid damper (TLD) with wave breaking", J. Fluids Struct., 8(5), 471-488. https://doi.org/10.1006/jfls.1994.1023
  38. Suthar, S.J. and Jangid, R.S. (2021a), "Design of tuned liquid sloshing dampers using nonlinear constraint optimization for across-wind response control of benchmark tall building", Structures. 33, 2675-2688. https://doi.org/10.1016/j.istruc.2021.05.059
  39. Suthar, S.J. and Jangid, R.S. (2021b), "Multiple tuned liquid sloshing dampers for across-wind response control of benchmark tall building", Innov. Infrastr. Solut., 7(1), 55. https://doi.org/10.1007/s41062-021-00650-6
  40. Suthar, S.J. and Jangid, R.S. (2022), "Optimal design of tuned liquid column damper for wind-induced response control of benchmark tall building", J. Vib. Eng. Technol., 10(8), 2935-2945. https://doi.org/10.1007/s42417-022-00528-6
  41. Tait, M.J. (2008), "Modelling and preliminary design of a structure-TLD system", Eng. Struct., 30(10), 2644-2655. https://doi.org/10.1016/j.engstruct.2008.02.017
  42. Tait, M.J., Isyumov, N. and El Damatty, A.A. (2008), "Performance of tuned liquid dampers", J. Eng. Mech., 134(5), 417-427. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:5(417)
  43. Tamura, Y., Fujii, K., Ohtsuki, T., Wakahara, T. and Kohsaka, R. (1995), "Effectiveness of tuned liquid dampers under wind excitation", Eng. Struct., 17(9), 609-621. https://doi.org/10.1016/0141-0296(95)00031-2
  44. Tanveer, M., Usman, M., Khan, I.U., Farooq, S.H. and Hanif, A. (2020), "Material optimization of tuned liquid column ball damper (TLCBD) for the vibration control of multi-storey structure using various liquid and ball densities", J. Build. Eng., 32, 101742. https://doi.org/10.1016/j.jobe.2020.101742
  45. Veletsos, A.S. (1984), "Seismic response and design of liquid storage tanks", In: Guidelines for the seismic design of oil and gas pipeline systems, pp. 255-370.
  46. Wang, Q., Qiao, H., De Domenico, D., Zhu, Z. and Tang, Y. (2021), "Seismic performance of optimal Multi-Tuned Liquid Column Damper-Inerter (MTLCDI) applied to adjacent high-rise buildings", Soil Dyn. Earthq. Eng., 143, 106653. https://doi.org/10.1016/j.soildyn.2021.106653
  47. Yalla, S.K. and Kareem, A. (2000), "Optimum absorber parameters for tuned liquid column dampers", J. Struct. Eng., 126(8), 906-915. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(906)
  48. Yalla, S.K., Kareem, A. and Kantor, J.C. (2001), "Semi-active tuned liquid column dampers for vibration control of structures", Eng. Struct., 23(11), 1469-1479. https://doi.org/10.1016/S0141-0296(01)00047-5
  49. Yucel, M., Bekdas, G., Nigdeli, S.M. and Sevgen, S. (2019), "Estimation of optimum tuned mass damper parameters via machine learning", J. Build. Eng., 26, 100847. https://doi.org/10.1016/j.jobe.2019.100847
  50. Zhao, Z., Zhang, R., Jiang, Y. and Pan, C. (2019), "A tuned liquid inerter system for vibration control", Int. J. Mech. Sci., 164, 105171. https://doi.org/10.1016/j.ijmecsci.2019.105171
  51. Zhao, Z., Chen, Q., Zhang, R., Pan, C. and Jiang, Y. (2020), "Energy dissipation mechanism of inerter systems", Int. J. Mech. Sci., 184, 105845. https://doi.org/10.1016/j.ijmecsci.2020.105845
  52. Zhao, Z., Zhang, R., Wierschem, N.E., Jiang, Y. and Pan, C. (2021), "Displacement mitigation-oriented design and mechanism for inerter-based isolation system", J. Vib. Control, 27(17-18), 1991-2003. https://doi.org/10.1177/1077546320951662
  53. Zhao, Z., Wang, Y., Hu, X. and Weng, D. (2022), "Seismic performance upgrading of containment structures using a negative-stiffness amplification system", Eng. Struct., 262, 114394. https://doi.org/10.1016/j.engstruct.2022.114394
  54. Zhao, Z., Chen, Q., Hu, X. and Zhang, R. (2023), "Enhanced energy dissipation benefit of negative stiffness amplifying dampers", Int. J. Mech. Sci., 240, 107934. https://doi.org/10.1016/j.ijmecsci.2022.107934