과제정보
This paper was supported by the Ministry of education of Humanities and Social Science project (No. 23YJCZH037), the Foundation of the State Key Laboratory of Mountain Bridge and Tunnel Engineering (No. SKLBT2210), China, the Educational Science Planning Project of Zhejiang Province (No. 2023SCG222), and the Scientific Research Project of Zhejiang Provincial Department of Education (No. Y202248682).
참고문헌
- Brochu, E., Cora, V.M. and De Freitas, N. (2010), "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning", Comput. Sci., 1012.2599.
- Bull, A.D. (2011), "Convergence rates of efficient global optimization algorithms", Mach. Learn., 12(10), arXiv: 1101.3501.
- Bullock, Z., Karimi, Z., Dashti, S., Porter, K., Liel, A.B. and Franke, K.W. (2019), "A physics-informed semi-empirical probabilistic model for the settlement of shallow-founded structures on liquefiable ground", Geotechnique, 69(5), 406-419. https://doi.org/10.1680/jgeot.17.P.174
- Chen, Z. and Sun, H. (2021), "Sparse representation for damage identification of structural systems", Struct. Health Monit., 20(4), 1644-1656. https://doi.org/10.1177/1475921720926970
- Deng, H.S., Fu, H.L., Yue, S., Huang, Z. and Zhao, Y.Y. (2022), "Ground loss model for analyzing shield tunneling-induced surface settlement along curve sections", Tunn. Underg. Space Technol., 119, 104250. https://doi.org/10.1016/j.tust.2021.104250
- Ding, Y., Ye, X.W. and Guo, Y. (2023a), "Wind load assessment with the JPDF of wind speed and direction based on SHM data", Structures, 47(1), 2074-2080. https://doi.org/10.1016/j.istruc.2022.12.028
- Ding, Y., Ye, X.W. and Guo, Y. (2023b), "Data set from wind, temperature, humidity and cable acceleration monitoring of the Jiashao bridge", J. Civil Struct. Health Monit., 13(2-3), 579-589. https://doi.org/10.1007/s13349-022-00662-5
- Ding, Y., Ye, X.W. and Guo, Y. (2023c), "Copula-based JPDF of wind speed, wind direction, wind angle, and temperature with SHM data", Probab. Eng. Mech., 73, 103483. https://doi.org/10.1016/j.probengmech.2023.103483
- Ding, Y., Ye, X.W., Guo, Y., Zhang, R. and Ma, Z. (2023d), "Probabilistic method for wind speed prediction and statistics distribution inference based on SHM data-driven", Probab. Eng. Mech., 73, 103475. https://doi.org/10.1016/j.probengmech.2023.103475
- Ding, Y., Ye, X.W. and Guo, Y. (2023e), "A multistep direct and indirect strategy for predicting wind direction based on the EMD-LSTM model", Struct. Control Health Monit., 4950487. https://doi.org/10.1155/2023/4950487
- Ding, Y., Ye, X.W., Su, Y.H. and Zheng, X.L. (2023f), "A framework of cable wire failure mode deduction based on Bayesian network", Structures, 57, 104996. https://doi.org/10.1016/j.istruc.2023.104996
- Ding, Y., Hang, D., Wei, Y.J., Zhang, X.L., Ma, S.Y., Liu, Z.X., Zhou, S.X. and Han, Z. (2023g), "Settlement prediction of existing metro induced by new metro construction with machine learning based on SHM data: a comparative study", J. Civil Struct. Health Monit., 13(6-7), 1447-1457. https://doi.org/10.1007/s13349-023-00714-4
- Ding, Y., Ye, X.W., Ding, Z., Wei, G., Cui, Y.L., Han, Z. and Jin, T. (2023h), "Short-term tunnel-settlement prediction based on Bayesian wavelet: a probability analysis method", J. Zhejiang Univ.-SCI A, 24(11), 960-977. https://doi.org/10.1631/jzus.A2200599
- Fang, K., Yang, Z., Jiang, Y., Sun, Z. and Wang, Z. (2020), "Surface subsidence characteristics of fully overlapping tunnels constructed using tunnel boring machine in a clay stratum", Comput. Geotech., 125, 103679. https://doi.org/10.1016/j.compgeo.2020.103679
- Gelbart, M.A., Snoek, J. and Adams, R.P. (2014), "Bayesian optimization with unknown constraints", Mach. Learn., arXiv: 1403.5607.
- Gong, W., Luo, Z., Juang, C.H., Huang, H., Zhang, J. and Wang, L. (2014), "Optimization of site exploration program for improved prediction of tunneling-induced ground settlement in clays", Comput. Geotech., 56, 69-79. https://doi.org/10.1016/j.compgeo.2013.10.008
- Han, Q., Ni, P.H., Du, X.L., Zhou, H. and Cheng, X. (2022), "Computationally efficient Bayesian inference for probabilistic model updating with polynomial chaos and Gibbs sampling", Struct. Control Health Monit., 29(6), e2936. https://doi.org/10.1002/stc.2936
- Huang, H., Jia, R., Shi, X., Liang, J. and Dang, J. (2021), "Feature selection and hyper parameters optimization for short-term wind power forecast", Appl. Intell., 51(10), 6752-6770. https://doi.org/10.1007/s10489-021-02191-y
- Jones, D.R., Schonlau, M. and Welch, W.J. (1998), "Efficient global optimization of expensive black-box functions", J. Global Optim., 13(4), 455-492. https://doi.org/10.1023/A:1008306431147
- Li, B. and Wang, Z.Z. (2019), "Numerical study on the response of ground movements to construction activities of a metro station using the pile-beam-arch method", Tunn. Underg. Space Technol., 88, 209-220. https://doi.org/10.1016/j.tust.2019.03.014
- Li, W., Feng, W. and Yuan, H.Z. (2020), "Multimode traffic travel behavior characteristics analysis and congestion governance research", J. Adv. Transp., 5, 1-8. https://doi.org/10.1155/2020/6678158
- Liu, T., Wei, H., Liu, S. and Zhang, K. (2020a), "Industrial time series forecasting based on improved Gaussian process regression", Soft Comput., 24(20), 15853-15869. https://doi.org/10.1007/s00500-020-04916-6
- Liu, B., Zhang, D.W., Yang, C. and Zhang, Q.B. (2020b), "Long-term performance of metro tunnels induced by adjacent large deep excavation and protective measures in Nanjing silty clay", Tunn. Underg. Space Technol., 95, 103147. https://doi.org/10.1016/j.tust.2019.103147
- Luat, N.V., Nguyen, V.Q., Lee, S., Woo, S. and Lee, K. (2020), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geomech. Eng., Int. J., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583
- Madra, A., Causse, P., Trochu, F., Adrien, J., Maire, E. and Breitkopf, P. (2019), "Stochastic characterization of textile reinforcements in composites based on X-ray microtomographic scans", Compos. Struct., 224, 111031. https://doi.org/10.1016/j.compstruct.2019.111031
- Miliziano, S. and de Lillis, A. (2019), "Predicted and observed settlements induced by the mechanized tunnel excavation of metro line C near S. Giovanni station in Rome", Tunn. Underg. Space Technol., 86, 236-246. https://doi.org/10.1016/j.tust.2019.01.022
- Moaveni, B. and Najafi, S. (2017), "Metro traffic modeling and regulation in loop lines using a robust model predictive controller to improve passenger satisfaction", IEEE Transact. Control Syst. Technol., 26(5), 1541-1551. https://doi.org/10.1109/tcst.2017.2735945
- Mu, B., Xie, X., Li, X., Li, J., Shao, C. and Zhao, J. (2021), "Monitoring, modelling and prediction of segmental lining deformation and ground settlement of an EPB tunnel in different soils", Tunn. Underg. Space Technol., 113, 103870. https://doi.org/10.1016/j.tust.2021.103870
- Ni, Y.Q., Wang, Y.W. and Zhang, C. (2020), "A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data", Eng. Struct., 212, 110520. https://doi.org/10.1016/j.engstruct.2020.110520
- Ni, P.H., Li, Q., Han, Q., Xu, K. and Du, X.L. (2023), "Substructure approach for Bayesian probabilistic model updating using response reconstruction technique", Mech. Syst. Signal Proc., 183, 109624. https://doi.org/10.1016/j.ymssp.2022.109624
- Qiu, J., Qin, Y., Feng, Z., Wang, L. and Wang, K. (2020), "Safety risks and protection measures for city wall during construction and operation of Xi'an Metro", J. Perform. Constr. Fac., 34(2), 04020003. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001374
- Qu, K., Xu, Y.Y. and Huang, J.X. (2023), "Numerical simulation of hydrodynamic characteristics of submerged floating tunnels under the action of focused waves", J. Changsha Univ. Sci. Techn. (Natural Science), (04):127-141. [In Chinese] https://doi.org/10.19951/j.cnki.1672-9331.20220425001
- Shi, S., Zhao, R., Li, S., Xie, X., Li, L., Zhou, Z. and Liu, H. (2019), "Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application", Tunn. Underg. Space Technol., 90, 1-11. https://doi.org/10.1016/j.tust.2019.04.013
- Snoek, J., Larochelle, H. and Adams, R.P. (2012), "Practical bayesian optimization of machine learning algorithms", Mach. Learn., arXiv:1206.2944.
- Tan, L.S., Ong, V.M., Nott, D.J. and Jasra, A. (2016), "Variational inference for sparse spectrum Gaussian process regression", Statis. Comput., 26(6), 1243-1261. https://doi.org/10.1007/s11222-015-9600-7
- Tu, H., Zhou, H., Qiao, C. and Gao, Y. (2020), "Excavation and kinematic analysis of a shallow large-span tunnel in an up-soft/low-hard rock stratum", Tunn. Underg. Space Technol., 97, 103245. https://doi.org/10.1016/j.tust.2019.10324
- Vereecken, E., Botte, W., Lombaert, G. and Caspeele, R. (2020), "Bayesian decision analysis for the optimization of inspection and repair of spatially degrading concrete structures", Eng. Struct., 220, 111028. https://doi.org/10.1016/j.engstruct.2020.111028
- Wan, H.P. and Ni, Y.Q. (2018), "Bayesian modeling approach for forecast of structural stress response using structural health monitoring data", J. Struct. Eng., 144(9), 04018130. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002085
- Wan, H.P. and Ni, Y.Q. (2019), "Bayesian multi-task learning methodology for reconstruction of structural health monitoring data", Struct. Health Monit., 18(4), 1282-1309. https://doi.org/10.1177/1475921718794953
- Wang, F., Gou, B. and Qin, Y. (2013), "Modeling tunneling-induced ground surface settlement development using a wavelet smooth relevance vector machine", Compu. Geotech., 54, 125-132. https://doi.org/10.1016/j.compgeo.2013.07.004
- Wang, Z.L., Ogawa, T. and Adachi, Y. (2019), "Influence of algorithm parameters of Bayesian optimization, genetic algorithm, and particle swarm optimization on their optimization performance", Adv. Theory Simulat., 2(10), 1900110. https://doi.org/10.1002/adts.201900110
- Ye, X.W., Ding, Y. and Wan, H.P. (2019), "Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study", Smart Struct. Syst., Int. J., 24(6), 733-744. https://doi.org/10.12989/sss.2019.24.6.733
- Ye, X.W., Ding, Y. and Wan, H.P. (2020), "Statistical evaluation of wind properties based on long-term monitoring data", J. Civ. Struct. Health Monit., 10(5), 987-1000. https://doi.org/10.1007/s13349-020-00430-3
- Ye, X.W., Ding, Y. and Wan, H.P. (2021), "Probabilistic forecast of wind speed based on Bayesian emulator using monitoring data", Struct. Control Health Monit., 28(1), e2650. https://doi.org/10.1002/stc.2650
- Zhang, S., Shang, C., Wang, C., Song, R. and Wang, X. (2019), "Real-time safety risk identification model during metro construction adjacent to buildings", J. Construt. Eng. Manag., 145(6), 04019034. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001657
- Zhang, K., Lyu, H.M., Shen, S.L., Zhou, A. and Yin, Z.Y. (2020a), "Evolutionary hybrid neural network approach to predict shield tunneling-induced ground settlements", Tunn. Underg. Space Technol., 16, 103594. https://doi.org/10.1016/j.tust.2020.103594
- Zhang, P., Wu, H.N., Chen, R.P. and Chan, T.H. (2020b), "Hybrid meta-heuristic and machine learning algorithms for tunneling-induced settlement prediction: A comparative study", Tunn. Underg. Space Technol., 99, 103383. https://doi.org/10.1016/j.tust.2020.103383
- Zhang, W., Zhao, M., Du, X., Gao, Z. and Ni, P. (2023), "Probabilistic machine learning approach for structural reliability analysis", Probab. Eng. Mech., 74, 103502. https://doi.org/10.1016/j.probengmech.2023.103502