DOI QR코드

DOI QR Code

A real-time hybrid testing method for vehicle-bridge coupling systems

  • Guoshan Xu (School of Civil Engineering, Harbin Institute of Technology) ;
  • Yutong Jiang (School of Civil Engineering, Harbin Institute of Technology) ;
  • Xizhan Ning (College of Civil Engineering, Huaqiao University) ;
  • Zhipeng Liu (School of Civil Engineering, Harbin Institute of Technology)
  • Received : 2023.01.26
  • Accepted : 2023.11.30
  • Published : 2024.01.25

Abstract

The investigation on vehicle-bridge coupling system (VBCS) is crucial in bridge design, bridge condition evaluation, and vehicle overload control. A real-time hybrid testing (RTHT) method for VBCS (RTHT-VBCS) is proposed in this paper for accurately and economically disclosing the dynamic performance of VBCSs. In the proposed method, one of the carriages is chosen as the experimental substructure loaded by servo-hydraulic actuator loading system in the laboratory, and the remaining carriages as well as the bridge structure are chosen as the numerical substructure numerically simulated in one computer. The numerical substructure and the experimental substructure are synchronized at their coupling points in terms of force equilibrium and deformation compatibility. Compared to the traditional iteration experimental method and the numerical simulation method, the proposed RTHT-VBCS method could not only obtain the dynamic response of VBCS, but also economically analyze various working conditions. Firstly, the theory of RTHT-VBCS is proposed. Secondly, numerical models of VBCS for RTHT method are presented. Finally, the feasibility and accuracy of the RTHT-VBCS are preliminarily validated by real-time hybrid simulations (RTHSs). It is shown that, the proposed RTHT-VBCS is feasible and shows great advantages over the traditional methods, and the proposed models can effectively represent the VBCS for RTHT method in terms of the force equilibrium and deformation compatibility at the coupling point. It is shown that the results of the single-degree-of-freedom model and the train vehicle model are match well with the referenced results. The RTHS results preliminarily prove the effectiveness and accuracy of the proposed RTHT-VBCS.

Keywords

Acknowledgement

The National Natural Science Foundation of China (Grant Nos. 52078150, 51978213, 51908231) and the National Key Research and Development Program of China (Grant Nos. 2017YFC0703605, 2016YFC0701106) are greatly acknowledged for supporting the investigation of this paper.

References

  1. Ahmadizadeh, M., Mosqueda, G. and Reinhorn, A.M. (2008), "Compensation of actuator delay and dynamics for real-time hybrid structural simulation", Earthq. Eng. Struct. Dyn., 37(1), 21-42. https://doi.org/10.1002/eqe.743 
  2. Avci, M., Botelho, R.M. and Christenson, R. (2020), "Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis", Smart Struct. Syst., Int. J., 25(2), 155-167. https://doi.org/10.12989/sss.2020.25.2.155 
  3. Cai, Y., Chen, S.S., Rote, D.M. and Coffey, H.T. (1996), "Vehicle/Guideway dynamic interaction in maglev systems", J. Dyn. Sys. Meas. Control, 118(3), 526-530. https://doi.org/10.1115/1.2801176 
  4. Carrion, J.E., Spencer Jr, B.F. and Phillips, B.M. (2009), "Real-time hybrid simulation for structural control performance assessment", Earthq. Eng. Eng. Vib., 8(4), 481-492. https://doi.org/10.1007/s11803-009-9122-4 
  5. Castaneda, N., Gao, X. and Dyke, S. (2012), "A real-time hybrid simulation platform for the evaluation of seismic mitigation in building structures", Proceedings of the 20th Analysis and Computation Specialty Conference, Chicago, IL, USA. 
  6. Chen, P.C. and Chen, P.C. (2020), "Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation", Smart Struct. Syst., Int. J., 25(6), 719-732. https://doi.org/10.12989/sss.2020.25.6.719 
  7. Chen, C., Ricles, J.M., Karavasilis, T.L., Chae, Y. and Sause, R. (2012a), "Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seismic loading", Eng. Struct., 35, 71-82. https://doi.org/10.1016/j.engstruct.2011.10.006 
  8. Chen, C., Ricles, J.M. and Guo, T. (2012b), "Improved adaptive inverse compensation technique for real-time hybrid simulation", J. Eng. Mech., 138(12), 1432-1446. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000450 
  9. Duvnjak, I., Bartolac, M., Damjanovic, D. and Koscak, J. (2020), "Performance assessment of a concrete railway bridge by diagnostic load testing", Struct. Concrete, 21(6), 2363-2376. https://doi.org/10.1002/suco.201900491 
  10. Guo, W., Zeng, C., Gou, H., Gu, Q., Wang, T., Zhou, H., Zhang, B. and Wu, J. (2021), "Real-time hybrid simulation of high-speed train-track-bridge interactions using the moving load convolution integral method", Eng. Struct., 228, 111537. https://doi.org/10.1016/j.engstruct.2020.111537 
  11. Guo, W., Long, Y., He, C., Wang, Y., Zeng, Y. and Song, J. (2022), "Off-line hybrid simulation method on train-track-bridge coupling vibration in high-speed railway", Int. J. Struct. Stab. Dyn., 22(10), 2241014. https://doi.org/10.1142/S0219455422410140 
  12. Hayati, S. and Song, W. (2017), "An optimal discrete-time feedforward compensator for real-time hybrid simulation", Smart Struct. Syst., Int. J., 20(4), 483-498. https://doi.org/10.12989/sss.2017.20.4.483 
  13. Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. Dyn., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O 
  14. Lee, J.S., Kwon, S.D., Kim, M.Y. and Yeo, I.H. (2009), "A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges", J. Sound Vib., 328(3), 301-317. https://doi.org/10.1016/j.jsv.2009.08.010 
  15. Mahmoud, H.N., Elnashai, A.S., Spencer Jr, B.F., Kwon, O.S. and Bennier, D.J. (2013), "Hybrid simulation for earthquake response of semirigid partial-strength steel frames", J. Struct. Eng., 139(7), 1134-1148. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000721 
  16. Meng, D., Xiao, F., Zhang, L., Xu, X., Chen, G.S., Zatar, W. and Hulsey, J.L. (2019), "Nonlinear vibration analysis of vehicle-bridge interaction for condition monitoring", J. Low Freq. Noise Vib. Active Control, 38(3-4), 1422-1432. https://doi.org/10.1177/1461348418811703 
  17. Min, D.J., Jung, M.R., Kim, M.Y. and Kwark, J.W. (2017), "Dynamic interaction analysis of maglev-guideway system based on a 3D full vehicle model", Int. J. Struct. Stab. Dy., 17(01), 1750006. https://doi.org/10.1142/S0219455417500067 
  18. Momoya, Y., Takahashi, T. and Nakamura, T. (2016), "A study on the deformation characteristics of ballasted track at structural transition zone by multi-actuator moving loading test apparatus", Transp. Geotech., 6, 123-134. https://doi.org/10.1016/j.trgeo.2015.11.001 
  19. Muthalif, A.G., Kasemi, H.B., Nordin, N.D., Rashid, M.M. and Razali, M.K.M. (2017), "Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller", Smart Struct. Syst., Int. J., 20(1), 85-97. https://doi.org/10.12989/sss.2017.20.1.085 
  20. Nakashima, M. and Masaoka, N. (1999), "Real-time on-line test for MDOF systems", Earthq. Eng. Struct. Dyn., 28(4), 393-420. https://doi.org/10.1002/(SICI)1096-9845(199904)28:4%3C393::AID-EQE823%3E3.0.CO;2-C 
  21. Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. Dyn., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106 
  22. Ning, X., Wang, Z., Zhou, H., Wu, B., Ding, Y. and Xu, B. (2019), "Robust actuator dynamics compensation method for real-time hybrid simulation", Mech. Syst. Signal Process, 131, 49-70. https://doi.org/10.1016/j.ymssp.2019.05.038 
  23. Ou, G., Ozdagli, A.I., Dyke, S.J. and Wu, B. (2015), "Robust integrated actuator control: experimental verification and real-time hybrid-simulation implementation", Earthq. Eng. Struct. Dyn., 44(3), 441-460. https://doi.org/10.1002/eqe.2479 
  24. Pawlus, W., Karimi, H.R. and Robbersmyr, K.G. (2011), "Mathematical modeling of a vehicle crash test based on elasto-plastic unloading scenarios of spring-mass models", Int. J. Adv. Manuf. Technol., 55(1), 369-378. https://doi.org/10.1007/s00170-010-3056-x 
  25. Phillips, B.M., Wierschem, N.E. and Spencer Jr, B.F. (2014), "Model-based multi-metric control of uniaxial shake tables", Earthq. Eng. Struct. Dyn., 43(5), 681-699. https://doi.org/10.1002/eqe.2366 
  26. Schellenberg, A.H., Mahin, S.A. and Fenves, G.L. (2009a), Advanced Implementation of Hybrid Simulation; PEER Report 2009-104. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA. 
  27. Schellenberg, A.H., Kim, H.K., Takahashi, Y., Fenves, G.L. and Mahin, S.A. (2009b), Open Fresco Command Language Manual; The Regents of the University of California, Berkeley, CA, USA. 
  28. Shao, X., Mueller, A. and Mohammed, B.A. (2016), "Real-time hybrid simulation with online model updating: methodology and implementation", J. Eng. Mech., 142(2), 04015074. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000987 
  29. Shao, P., Guo, W., Lei, Q. and Zeng, C. (2021), "Adaptive compound control for the real-time hybrid simulation of high-speed railway train-bridge coupling vibration", Struct. Control Health Monitor., 28(11), e2816. https://doi.org/10.1002/stc.2816 
  30. Shi, X., Zou, X. and Yang, P. (2010), "Study on road simulation test of motorcycle", Appl. Mech. Mater., 29-32, 1556-1561. https://doi.org/10.4028/www.scientific.net/AMM.29-32.1556 
  31. Tan, C. and Uddin, N. (2020), "Hilbert transform based approach to improve extraction of "drive-by" bridge frequency", Smart Struct. Syst., Int. J., 25(3), 265-277. https://doi.org/10.12989/sss.2020.25.3.265 
  32. Tang, Z., Gao, F., Liu, H. and Li, Y. (2023), "Implementation of shaking table based offline hybrid simulation through neural networks", In: Structures, Vol. 48, pp. 21-30. https://doi.org/10.1016/j.istruc.2022.12.050 
  33. Wang, T., Huang, D. and Shahawy, M.A. (1992), "Dynamic response of multigirder bridges", J. Struct. Eng., 118(8), 2222-2238. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2222) 
  34. Wang, Z., Ning, X., Xu, G., Zhou, H. and Wu, B. (2019), "High performance compensation using an adaptive strategy for real-time hybrid simulation", Mech. Syst. Signal Process, 133, 106262. https://doi.org/10.1016/j.ymssp.2019.106262 
  35. Wang, Z., Xu, G., Li, Q. and Wu, B. (2020), "An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 25(5), 569-580. https://doi.org/10.12989/sss.2020.25.5.569 
  36. Wu, B., Xu, G., Wang, Q. and Williams, M.S. (2006), "Operator-splitting method for real-time substructure testing", Earthq. Eng. Struct. Dyn., 35(3), 293-314. https://doi.org/10.1002/eqe.519 
  37. Wu, B., Wang, Q., Benson Shing, P. and Ou, J. (2007), "Equivalent force control method for generalized real-time substructure testing with implicit integration", Earthq. Eng. Struct. Dyn., 36(9), 1127-1149. https://doi.org/10.1002/eqe.674 
  38. Wu, B., Deng, L. and Yang, X. (2009), "Stability of central difference method for dynamic real-time substructure testing", Earthq. Eng. Struct. Dyn., 38(14), 1649-1663. https://doi.org/10.1002/eqe.927 
  39. Xi, R., Chen, Q., Meng, X. and Jiang, W. (2017), "Analysis of bridge deformations using real-time BDS measurements", Proceedings of the 6th International Conference on Computer Science and Network Technology, Dalian, China, October. 
  40. Xu, G., Wang, Z., Bao, Y., Yang, G. and Wu, B. (2020), "Shaking table substructure testing based on three-variable control method with velocity positive feedback", Appl. Sci., 10(16), 5414. https://doi.org/10.3390/app10165414 
  41. Xu, G., Zheng, L. and Bao, Y. (2022), "Shaking table substructure test of tuned liquid damper for controlling earthquake response of structure", Struct. Control Health Monit., 29(12), e3122. https://doi.org/10.1002/stc.3122 
  42. Yang, Y.B., Lin, C.W. and Yau, J.D. (2004), "Extracting bridge frequencies from the dynamic response of a passing vehicle", J. Sound Vib., 272(3-5), 471-493. https://doi.org/10.1016/S0022-460X(03)00378-X 
  43. Yang, T.Y., Stojadinovic, B. and Moehle, J. (2009), "Hybrid simulation of a zipper-braced steel frame under earthquake excitation", Earthq. Eng. Struct. Dyn., 38(1), 95-113. https://doi.org/10.1002/eqe.848 
  44. Zhou, H., Xu, D., Shao, X., Ning, X. and Wang, T. (2019), "A robust linear-quadratic-gaussian controller for the real-time hybrid simulation on a benchmark problem", Mech. Syst. Signal Process., 133, 106260. https://doi.org/10.1016/j.ymssp.2019.106260