Acknowledgement
The National Natural Science Foundation of China (Grant Nos. 52078150, 51978213, 51908231) and the National Key Research and Development Program of China (Grant Nos. 2017YFC0703605, 2016YFC0701106) are greatly acknowledged for supporting the investigation of this paper.
References
- Ahmadizadeh, M., Mosqueda, G. and Reinhorn, A.M. (2008), "Compensation of actuator delay and dynamics for real-time hybrid structural simulation", Earthq. Eng. Struct. Dyn., 37(1), 21-42. https://doi.org/10.1002/eqe.743
- Avci, M., Botelho, R.M. and Christenson, R. (2020), "Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis", Smart Struct. Syst., Int. J., 25(2), 155-167. https://doi.org/10.12989/sss.2020.25.2.155
- Cai, Y., Chen, S.S., Rote, D.M. and Coffey, H.T. (1996), "Vehicle/Guideway dynamic interaction in maglev systems", J. Dyn. Sys. Meas. Control, 118(3), 526-530. https://doi.org/10.1115/1.2801176
- Carrion, J.E., Spencer Jr, B.F. and Phillips, B.M. (2009), "Real-time hybrid simulation for structural control performance assessment", Earthq. Eng. Eng. Vib., 8(4), 481-492. https://doi.org/10.1007/s11803-009-9122-4
- Castaneda, N., Gao, X. and Dyke, S. (2012), "A real-time hybrid simulation platform for the evaluation of seismic mitigation in building structures", Proceedings of the 20th Analysis and Computation Specialty Conference, Chicago, IL, USA.
- Chen, P.C. and Chen, P.C. (2020), "Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation", Smart Struct. Syst., Int. J., 25(6), 719-732. https://doi.org/10.12989/sss.2020.25.6.719
- Chen, C., Ricles, J.M., Karavasilis, T.L., Chae, Y. and Sause, R. (2012a), "Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seismic loading", Eng. Struct., 35, 71-82. https://doi.org/10.1016/j.engstruct.2011.10.006
- Chen, C., Ricles, J.M. and Guo, T. (2012b), "Improved adaptive inverse compensation technique for real-time hybrid simulation", J. Eng. Mech., 138(12), 1432-1446. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000450
- Duvnjak, I., Bartolac, M., Damjanovic, D. and Koscak, J. (2020), "Performance assessment of a concrete railway bridge by diagnostic load testing", Struct. Concrete, 21(6), 2363-2376. https://doi.org/10.1002/suco.201900491
- Guo, W., Zeng, C., Gou, H., Gu, Q., Wang, T., Zhou, H., Zhang, B. and Wu, J. (2021), "Real-time hybrid simulation of high-speed train-track-bridge interactions using the moving load convolution integral method", Eng. Struct., 228, 111537. https://doi.org/10.1016/j.engstruct.2020.111537
- Guo, W., Long, Y., He, C., Wang, Y., Zeng, Y. and Song, J. (2022), "Off-line hybrid simulation method on train-track-bridge coupling vibration in high-speed railway", Int. J. Struct. Stab. Dyn., 22(10), 2241014. https://doi.org/10.1142/S0219455422410140
- Hayati, S. and Song, W. (2017), "An optimal discrete-time feedforward compensator for real-time hybrid simulation", Smart Struct. Syst., Int. J., 20(4), 483-498. https://doi.org/10.12989/sss.2017.20.4.483
- Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. Dyn., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
- Lee, J.S., Kwon, S.D., Kim, M.Y. and Yeo, I.H. (2009), "A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges", J. Sound Vib., 328(3), 301-317. https://doi.org/10.1016/j.jsv.2009.08.010
- Mahmoud, H.N., Elnashai, A.S., Spencer Jr, B.F., Kwon, O.S. and Bennier, D.J. (2013), "Hybrid simulation for earthquake response of semirigid partial-strength steel frames", J. Struct. Eng., 139(7), 1134-1148. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000721
- Meng, D., Xiao, F., Zhang, L., Xu, X., Chen, G.S., Zatar, W. and Hulsey, J.L. (2019), "Nonlinear vibration analysis of vehicle-bridge interaction for condition monitoring", J. Low Freq. Noise Vib. Active Control, 38(3-4), 1422-1432. https://doi.org/10.1177/1461348418811703
- Min, D.J., Jung, M.R., Kim, M.Y. and Kwark, J.W. (2017), "Dynamic interaction analysis of maglev-guideway system based on a 3D full vehicle model", Int. J. Struct. Stab. Dy., 17(01), 1750006. https://doi.org/10.1142/S0219455417500067
- Momoya, Y., Takahashi, T. and Nakamura, T. (2016), "A study on the deformation characteristics of ballasted track at structural transition zone by multi-actuator moving loading test apparatus", Transp. Geotech., 6, 123-134. https://doi.org/10.1016/j.trgeo.2015.11.001
- Muthalif, A.G., Kasemi, H.B., Nordin, N.D., Rashid, M.M. and Razali, M.K.M. (2017), "Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller", Smart Struct. Syst., Int. J., 20(1), 85-97. https://doi.org/10.12989/sss.2017.20.1.085
- Nakashima, M. and Masaoka, N. (1999), "Real-time on-line test for MDOF systems", Earthq. Eng. Struct. Dyn., 28(4), 393-420. https://doi.org/10.1002/(SICI)1096-9845(199904)28:4%3C393::AID-EQE823%3E3.0.CO;2-C
- Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. Dyn., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106
- Ning, X., Wang, Z., Zhou, H., Wu, B., Ding, Y. and Xu, B. (2019), "Robust actuator dynamics compensation method for real-time hybrid simulation", Mech. Syst. Signal Process, 131, 49-70. https://doi.org/10.1016/j.ymssp.2019.05.038
- Ou, G., Ozdagli, A.I., Dyke, S.J. and Wu, B. (2015), "Robust integrated actuator control: experimental verification and real-time hybrid-simulation implementation", Earthq. Eng. Struct. Dyn., 44(3), 441-460. https://doi.org/10.1002/eqe.2479
- Pawlus, W., Karimi, H.R. and Robbersmyr, K.G. (2011), "Mathematical modeling of a vehicle crash test based on elasto-plastic unloading scenarios of spring-mass models", Int. J. Adv. Manuf. Technol., 55(1), 369-378. https://doi.org/10.1007/s00170-010-3056-x
- Phillips, B.M., Wierschem, N.E. and Spencer Jr, B.F. (2014), "Model-based multi-metric control of uniaxial shake tables", Earthq. Eng. Struct. Dyn., 43(5), 681-699. https://doi.org/10.1002/eqe.2366
- Schellenberg, A.H., Mahin, S.A. and Fenves, G.L. (2009a), Advanced Implementation of Hybrid Simulation; PEER Report 2009-104. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
- Schellenberg, A.H., Kim, H.K., Takahashi, Y., Fenves, G.L. and Mahin, S.A. (2009b), Open Fresco Command Language Manual; The Regents of the University of California, Berkeley, CA, USA.
- Shao, X., Mueller, A. and Mohammed, B.A. (2016), "Real-time hybrid simulation with online model updating: methodology and implementation", J. Eng. Mech., 142(2), 04015074. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000987
- Shao, P., Guo, W., Lei, Q. and Zeng, C. (2021), "Adaptive compound control for the real-time hybrid simulation of high-speed railway train-bridge coupling vibration", Struct. Control Health Monitor., 28(11), e2816. https://doi.org/10.1002/stc.2816
- Shi, X., Zou, X. and Yang, P. (2010), "Study on road simulation test of motorcycle", Appl. Mech. Mater., 29-32, 1556-1561. https://doi.org/10.4028/www.scientific.net/AMM.29-32.1556
- Tan, C. and Uddin, N. (2020), "Hilbert transform based approach to improve extraction of "drive-by" bridge frequency", Smart Struct. Syst., Int. J., 25(3), 265-277. https://doi.org/10.12989/sss.2020.25.3.265
- Tang, Z., Gao, F., Liu, H. and Li, Y. (2023), "Implementation of shaking table based offline hybrid simulation through neural networks", In: Structures, Vol. 48, pp. 21-30. https://doi.org/10.1016/j.istruc.2022.12.050
- Wang, T., Huang, D. and Shahawy, M.A. (1992), "Dynamic response of multigirder bridges", J. Struct. Eng., 118(8), 2222-2238. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2222)
- Wang, Z., Ning, X., Xu, G., Zhou, H. and Wu, B. (2019), "High performance compensation using an adaptive strategy for real-time hybrid simulation", Mech. Syst. Signal Process, 133, 106262. https://doi.org/10.1016/j.ymssp.2019.106262
- Wang, Z., Xu, G., Li, Q. and Wu, B. (2020), "An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 25(5), 569-580. https://doi.org/10.12989/sss.2020.25.5.569
- Wu, B., Xu, G., Wang, Q. and Williams, M.S. (2006), "Operator-splitting method for real-time substructure testing", Earthq. Eng. Struct. Dyn., 35(3), 293-314. https://doi.org/10.1002/eqe.519
- Wu, B., Wang, Q., Benson Shing, P. and Ou, J. (2007), "Equivalent force control method for generalized real-time substructure testing with implicit integration", Earthq. Eng. Struct. Dyn., 36(9), 1127-1149. https://doi.org/10.1002/eqe.674
- Wu, B., Deng, L. and Yang, X. (2009), "Stability of central difference method for dynamic real-time substructure testing", Earthq. Eng. Struct. Dyn., 38(14), 1649-1663. https://doi.org/10.1002/eqe.927
- Xi, R., Chen, Q., Meng, X. and Jiang, W. (2017), "Analysis of bridge deformations using real-time BDS measurements", Proceedings of the 6th International Conference on Computer Science and Network Technology, Dalian, China, October.
- Xu, G., Wang, Z., Bao, Y., Yang, G. and Wu, B. (2020), "Shaking table substructure testing based on three-variable control method with velocity positive feedback", Appl. Sci., 10(16), 5414. https://doi.org/10.3390/app10165414
- Xu, G., Zheng, L. and Bao, Y. (2022), "Shaking table substructure test of tuned liquid damper for controlling earthquake response of structure", Struct. Control Health Monit., 29(12), e3122. https://doi.org/10.1002/stc.3122
- Yang, Y.B., Lin, C.W. and Yau, J.D. (2004), "Extracting bridge frequencies from the dynamic response of a passing vehicle", J. Sound Vib., 272(3-5), 471-493. https://doi.org/10.1016/S0022-460X(03)00378-X
- Yang, T.Y., Stojadinovic, B. and Moehle, J. (2009), "Hybrid simulation of a zipper-braced steel frame under earthquake excitation", Earthq. Eng. Struct. Dyn., 38(1), 95-113. https://doi.org/10.1002/eqe.848
- Zhou, H., Xu, D., Shao, X., Ning, X. and Wang, T. (2019), "A robust linear-quadratic-gaussian controller for the real-time hybrid simulation on a benchmark problem", Mech. Syst. Signal Process., 133, 106260. https://doi.org/10.1016/j.ymssp.2019.106260