과제정보
This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program - Mobility and Connectivity Platform for Digital Transformation Acceleration in Unmanned Delivery) (20024355, Development of autonomous driving connectivity technology based on sensor-infrastructure cooperation) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea)
참고문헌
- K. Zhang, S. Tong, H. Shi, G. Yue, and J. Zhao, "Moving object detection of assembly components based on improved background subtraction algorithm," IOP Conference Series: Materials Science and Engineering, vol. 1009, 2021, DOI: 10.1088/1757-899X/1009/1/012063.
- S. F. Lin and S. H. Huang, "Moving object detection from a moving stereo camera via depth information and visual odometry," 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, pp. 437-440, 2018, DOI:10.1109/ICASI.2018.8394278.
- Y. Zhou and O. Tuzel, "VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 4490-4499, 2018, DOI: 10.1109/CVPR.2018.00472.
- G. Ross, "Fast r-cnn," IEEE international conference on computer vision (ICCV), Santiago, Chile, pp. 1440-1448, 2015, DOI: 10.48550/arXiv.1504.08083.
- Y. Yan, Y. Mao, and B. Li, "Second: Sparsely embedded convolutional detection," Sensors, vol. 18, no. 10, Oct., 2018, DOI:10.3390/s18103337.
- A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, "PointPillars: Fast Encoders for Object Detection From Point Clouds," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 12689-12697, 2019, DOI: 10.1109/CVPR.2019.01298.
- S. Shi, X. Wang, and H. Li, "PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 770-779, 2019, DOI: 10.1109/CVPR.2019.00086.
- S. Shi, C. Guo, J. Yang, and H. Li, "PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 10526-10535, 2020, DOI: 10.1109/CVPR42600.2020.01054.
- K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, "CenterNet: Keypoint Triplets for Object Detection," 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), pp. 6568-6577, 2019, DOI: 10.1109/ICCV.2019.00667.
- H. Kim and S. Park, "Monocular Camera based Real-Time Object Detection and Distance Estimation Using Deep Learning," The Journal of Korea Robotics Society, vol. 14, no. 4, pp. 357-362, Nov., 2019, DOI: 10.7746/jkros.2019.14.4.357.
- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 779-788, 2016, DOI: 10.1109/CVPR.2016.91.
- R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, pp. 580-587, 2014, DOI: 10.1109/CVPR.2014.81.
- D. Song, J.-B. Yi, and S.-J. Yi, "Development of an Efficient 3D Object Recognition Algorithm for Robotic Grasping in Cluttered Environments," The Journal of Korea Robotics Society, vol. 17, no. 3, pp. 255-263, Aug., 2022, DOI: 10.7746/jkros.2022.17.3.255.
- T. Wang, X. Zhu, J. Pang, and D. Lin, "FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection," 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, pp. 913-922, 2021, DOI: 10.1109/ICCVW54120.2021.00107.
- Z. Tian, C. Shen, H. Chen, and T. He, "FCOS: Fully Convolutional One-Stage Object Detection," 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), pp. 9626-9635, 2019, DOI: 10.1109/ICCV.2019.00972.
- N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, "End-to-end object detection with transformers," European conference on computer vision (ECCV), Glasgow, UK, pp. 213-229, 2020, DOI: 10.48550/arXiv.2005.12872.
- Y. Wang, V. Guizilini, T. Zhang, Y. Wang, H. Zhao, and J. Solomon, "DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries," 2021 Conference on Robot Learning (CoRL), London, UK, DOI: 10.48550/arXiv.2110.06922.
- Y. Liu, T. Wang, X. Zhang, and J. Sun, "Petr: Position embedding transformation for multi-view 3D object detection," European Conference on Computer Vision, Tel Aviv, Israel, pp. 531-548, 2022, DOI: 10.48550/arXiv.2203.05625.
- Z. Chen, Z. Li, S. Zhang, L. Fang, Q. Jiang, and F. Zhao, "Graph-DETR3D: rethinking overlapping regions for multi-view 3D object detection," The 30th ACM International Conference on Multimedia, Lisboa, Portugal, pp. 5999-6008, 2022, DOI:10.1145/3503161.3547859.
- X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, "Multi-view 3D Object Detection Network for Autonomous Driving," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 6526-6534, 2017, DOI: 10.1109/CVPR.2017.691.
- C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, "Frustum PointNets for 3D Object Detection from RGB-D Data," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 918-927, 2018, DOI:10.1109/CVPR.2018.00102.
- Z. Wang and K. Jia, "Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection," 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, pp. 1742-1749, 2019, DOI: 10.1109/IROS40897.2019.8968513.
- R. Nabati and H. Qi, "CenterFusion: Center-based Radar and Camera Fusion for 3D Object Detection," 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, pp. 1526-1535, 2021, DOI: 10.1109/WACV48630.2021.00157.
- X. Chen, T. Zhang, Y. Wang, Y. Wang, and H. Zhao, "FUTR3D: A Unified Sensor Fusion Framework for 3D Detection," 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, pp. 172-181, 2023, DOI: 10.1109/CVPRW59228.2023.00022.
- X. Bai, Z. Hu, X. Zhu, Q. Huang, Y. Chen, H. Fu, and C. Tai, "TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, pp. 1080-1089, 2022, DOI: 10.1109/CVPR52688.2022.00116.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," arXiv:1706.03762, 2017, DOI: 10.48550/arXiv.1706.03762.
- Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. Rus, and S. Han, "BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation," 2023 IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, pp. 2774-2781, 2023, DOI: 10.1109/ICRA48891.2023.10160968.
- Y. Li, A. W. Yu, T. Meng, B. Caine, J. Ngiam, D. Peng, J. Shen, B. Wu, Y. Lu, D. Zhou, Q. V. Le, A. Yuille, and M. Tan, "DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, pp. 17161-17170, 2022, DOI: 10.1109/CVPR52688.2022.01667.
- Y. Chen, Y. Li, X. Zhang, J. Sun, and J. Jia, "Focal Sparse Convolutional Networks for 3D Object Detection," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, pp. 5418-5427, 2022, DOI:10.1109/CVPR52688.2022.00535.
- S. Xu, D. Zhou, J. Fang, J. Yin, Z. Bin, and L. Zhang, "Fusion Painting: Multimodal Fusion with Adaptive Attention for 3D Object Detection," 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, pp. 3047-3054, 2021, DOI: 10.1109/ITSC48978.2021.9564951.
- M. Liang, B. Yang, S. Wang, and R. Urtasun, "Deep continuous fusion for multi-sensor 3D object detection," The European conference on computer vision (ECCV), Munich, Germany, pp. 641-656, 2018, DOI: 10.48550/arXiv.2012.10992.
- W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, and A. C. Berg, "SSD: Single Shot MultiBox Detector," Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, pp. 21-37, 2016, DOI: 10.1007/978-3-319-46448-0_2.
- A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving? The KITTI vision benchmark suite," 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, pp. 3354-3361, 2012, DOI: 10.1109/CVPR.2012.6248074.