과제정보
This work was supported by the National Key Research and Development Program of China [2018YFD1100405];Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration [2018D19].
참고문헌
- Abuel-Naga, H.M., Bergado, D.T., Bouazza, A. and Pender, M.J. (2009), "Thermal conductivity of soft Bangkok clay from laboratory and field measurements", Eng. Geol., 105(3-4), 211-219. https://doi.org/10.1016/j.enggeo.2009.02.008.
- Aldaood, A., Bouasker, M. and Al-Mukhtar, M. (2016), "Effect of water during freeze-thaw cycles on the performance and durability of lime-treated gypseous soil", Cold Reg. Sci. Technol., 123, 155-163. https://doi.org/10.1016/j.coldregions.2015.12.008.
- Al-Hunaidi, M.O., Chen, P.A., Rainer, J.H. and Tremblay, M. (2011), "Shear moduli and damping in frozen and unfrozen clay by resonant column tests", Can. Geotech. J., 33(3), 510-514. https://doi.org/10.1139/t96-073.
- Bo, Y.F., Chen, G.X., Zhou, Z.L. and Wu, Q. (2021), "Comparison research on the normalized dynamic shear modulus and damping ratio by resonant column and cyclic triaxial tests", J. Disaster Prevent. Mitigation Eng., 41(2), 343-349. https://doi.org/10.13409/j.cnki.jdpme.20191017003.
- Cheng, S., Wang, Q., Fu, H.C., Wang, J.Q., Han, Y., Shen, J.J. and Lin, S. (2021), "Effect of freeze-thaw cycles on the mechanical properties and constitutive model of saline soil", Geomech. Eng., 27(4), 309-322. https://doi.org/10.12989/gae.2021.27.4.309.
- Chen, S.J., Ma, W., Li, G.Y., Liu, E.L. and Zhang, G. (2017), "Development and application of triaxial apparatus of frozen soil used in conjunction with medical CT", Rock Soil Mech., 38(2), 359-367. https://doi.org/10.16285/j.rsm.2017.S2.049.
- Christ, M., Kim, Y.C. and Park, J.B. (2009), "The Influence of temperature and cycles on acoustic and mechanical properties of frozen soils", KSCE J. Civil Eng., 13(3), 153-159. https://doi.org/10.1007/s12205-009-0153-1.
- Czajkowski, R.L. and Vinson, T.S. (1980), "Dynamic properties of frozen silt under cyclic loading", J. Geotech. Geotech. Eng. Division, 106(9), 963-980. https://doi.org/10.1016/0022-1694(80)90029-3.
- Czurda, K.A. and Hohmann, M. (1997), "Freezing effect on shear strength of clayey soils", Appl. Clay Sci., 12(1-2), 165-187. https://doi.org/10.1016/s0169-1317(97)00005-7.
- Esmaeili-Falak, M., Katebi, H. and Javadi, A.A. (2020), "Effect of freezing on stress-strain characteristics of granular and cohesive soils", J. Cold Reg. Eng., 34(2), 05020001. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000205.
- Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and young's modulus of frozen sand using artificial intelligence methods", J. Cold Reg. Eng., 33(3), 04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
- Fard, A.R., Moradi, G., Ghalehjough, B.K. and Abbasnejad, A. (2020), "Freezing-thawing resistance evaluation of sandy soil, improved by polyvinyl acetate and ethylene glycol monobutyl ether mixture", Geomech. Eng., 23(2), 179-187. https://doi.org/10.12989/gae.2020.23.2.179.
- Fredlund, D.G. (2006), "Unsaturated soil mechanics in engineering practice", J. Geotech. Geoenviron. Eng., 132(3), 286-321. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(286).
- Garakani, A.A., Haeri, S.M., Khosravi, A. and Habibagahi, G. (2015), "Hydro-mechanical behavior of undisturbed collapsible loessial soils under different stress state conditions", Eng. Geol., 195, 28-41. https://doi.org/10.1016/j.enggeo.2015.05.026.
- Girgis, N. (2019), "Experimental investigations on temperaturedependent mechanical properties of artificially frozen sandy clay soils", Montreal: Concordia University.
- Girgis, N., Li, B., Akhtar, S. and Courcelles, B. (2020), "Experimental study of rate-dependent uniaxial compressive behaviors of two artificial frozen sandy clay soils", Cold Reg. Sci. Technol., 180, 103166. https://doi.org/10.1016/j.coldregions.2020.103166.
- Guler, E. and Afacan, K.B. (2021), "Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests", Geomech. Eng., 24(2), 105-113. https://doi.org/10.12989/gae.2021.24.2.105.
- Hardin, B.O. and Drnevich, V.P. (1972), "Shear modulus and damping in soils: measurement and parameter effects", ASCE Soil Mech. Found. Division J., 98(6), 603-624. https://doi.org/10.1061/JSFEAQ.0001756.
- Ishihara, K., Yoshida, N. and Tsujino, S. (1985), "Modelling of stress-strain relations of soils in cyclic loading", Proceedings of the International Conference on Numerical Methods in Geomechanics.
- Jiang, W.Y., Yang, P., Chen, B. and He, W.L. (2017), "Experimental study on strength properties of artificial frozen soil in marine soft soil area of Ningbo city, China", J. Forestry Eng., 2(5), 126-131. https://doi.org/10.13360/j.issn.2096-1359.2017.05.022.
- Kallioglou, P., Tika, T. and Pitilakis, K. (2008), "Shear modulus and damping ratio of cohesive soils", J. Earthq. Eng., 12(6), 879-913. https://doi.org/10.1080/13632460802536552.
- Kang, X., Ge, L., Chang, K.T. and Kwok, A.O. (2015), "StrainControlled Cyclic Simple Shear Tests on Sand with Radial Strain Measurements", J. Mater. Civil Eng., 04015169. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001458.
- Kang, X., Ge, L. and Cheng, Y. (2015), "Radial strain behaviors and stress state interpretation of soil under direct simple shear", J. Test. Eval., 43(6), 1-8. https://doi.org/10.1520/JTE20130224
- Kim, S.Y., Kim, Y. and Lee, J.S. (2021), "Effects of frozen water content and silt fraction on unconfined compressive behavior of fill materials", Constr. Build. Mater., 266, 120912. https://doi.org/10.1016/j.conbuildmat.2020.120912.
- Kumar, A. and Soni, D.K. (2020), "Strength and microstructural characterisation of plastic soil under freeze and thaw cycles", Indian Geotech. J., 50, 359-371. https://doi.org/10.1007/s40098-019-00372-8.
- Lee, J.S., Yu, J.D., Han, K. and Kim, S.Y. (2020), "Strength characteristics of sand-silt mixtures subjected to cyclic freezingthawing-repetitive loading", Sensors, 20(18), 5381. https://doi.org/10.3390/s20185381.
- Le, K.N. and Ghayoomi, M. (2017), "Cyclic direct simple shear test to measure strain-dependent dynamic properties of unsaturated sand", Geotech. Test. J., 40(3), 381-395. https://doi.org/10.1520/GTJ20160128.
- Li, M.M., Niu, Y.H., Jiang, C., Mu, Q.S. and Li, Z.P. (2016), "Recent progress of excavation and breaking methods for frozen soil", Mech. Eng., 38(2), 126-133. https://doi.org/10.6052/1000-0879-15-049.
- Liu, J.K., Cui, Y.H., Liu, X. and Chang, D. (2020), "Dynamic characteristics of warm frozen soil under direct shear testcomparison with dynamic triaxial test", Soil Dyn. Earthq. Eng., 133, 106114. https://doi.org/10.1016/j.soildyn.2020.106114.
- Li, X.L., Wang, H.J., Zou, S.J., Ma, H.C. and Niu, Y.H. (2017), "Research state of deformation characteristics of frozen soil under cyclic loading and problems in frozen soil excavation", J. Glaciology and Geocryology, 39(1), 92-101. https://doi.org/10.7522/j.issn.1000-0240.2017.0012.
- Ma, W. and Su, Y.Q. (2021), "Advances on seismic safety study of the permafrost sites along Qinghai-Tibet project corridor", J. Disaster Prevent. Mitigation Eng., 41(4), 723-733. https://doi.org/10.13409/j.cnki.jdpme.2021.04.003.
- Mosallamy, M.E., Fattah, T. and Khouly, M.E. (2016), "Experimental study on the determination of small strain-shear modulus of loess soil", HBRC J., 12(2), 181-190. https://doi.org/10.1016/j.hbrcj.2014.11.010.
- Mu, R., Huang, Z.H., Pu, S.Y., Yao, Z.H. and Cheng, X. (2020), "Accumulated deformation characteristics of undisturbed red clay under cyclic loading and dynamic constitutive relationship", Rock Soil Mech., 42(2), 1-10. https://doi.org/10.16285/j.rsm.2020.0719.
- Oh, M.Y., Bang, K.H., Hong, S.S., Kim, Y.S. and Cho, W.J. (2011), "Freezing effects on strength characteristics of Antarctic ground under Jang Bogo station", Proceedings of the Korean Geo-Environmental Society.
- Okamura, M. and Tamamura, S. (2011), "Seismic stability of embankment on soft soil deposit", Int. J. Phys. Model. Geotech., 11(2), 50-57. https://doi.org/10.1680/ijpmg.2011.11.2.50.
- Onur, M.I., Tuncan, M. and Tuncan, A. (2014), "An experimental study for determining the shear modulus of Toyoura sand", Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology, Istanbul.
- Reznik, Y.M. (2007), "Influence of physical properties on deformation characteristics of collapsible soils", Eng. Geol., 92(1-2), 27-37. https://doi.org/10.1016/j.enggeo.2007.03.001.
- Seed, H.B. and Lee, K.L. (2002), "Liquefaction of saturated sand during cyclic loading", Geotechnical Special Publication, 92(118), 105-134. https://doi.org/10.1061/JSFEAQ.0000913.
- Shelman, A., Tantalla, J., Sritharan, S. and Nikolaou, S. (2014), "Characterization of seasonally frozen soils for seismic design of foundations", J. Geotech. Geoenviron. Eng., 140(7), 1-10. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001065.
- Shogaki, T., Nochikawa, Y. and Sakamoto, T. (2003), "Consolidation properties of Pusan new port clays", Pusan Korea: Proceedings of the Korea-Japan Joint Workshop.
- Tamotsu, M., Kazuhiro, O. and Koji, Y. (2004), "Geotechnical information and engineering practice for constructing manmade island in Osaka Bay", Engineering Practice and Performance of Soft Deposits, IS-OSAKA, 561-586.
- Teachavorasinskun, S. Thongchim, P. and Lukkunaprasit, P. (2002), "Shear modulus and damping of soft Bangkok clays", Can. Geotech. J., 39(5), 1201-1208. https://doi.org/10.1139/t02-048.
- Thomas, H.R. and Rees, S.W. (2010), "The numerical simulation of seasonal soil drying in an unsaturated clay soil", Int. J. Numer. Anal. Method. Geomech., 17(2), 119-132. https://doi.org/10.1002/nag.1610170204.
- Tong, S.J., Deng, Y.B., Chen, F., Liu, G.B. and Bao, X.M. (2018), "Study on settlement characteristics of energy piles considering temperature effect", Build. Struct., 48(21), 119-123. https://doi.org/10.19701/j.jzjg.2018.21.023.
- Tounsi, H., Rouabhi, A., Jahangir, E. and Guerin, F. (2020), "Mechanical behavior of frozen metapelite: Laboratory investigation and constitutive modeling", Cold Reg. Sci. Technol., 175, 103058. https://doi.org/10.1016/j.coldregions.2020.103058.
- Viran, P.A.G. and Binal, A. (2018), "Effects of repeated freezethaw cycles on physico-mechanical properties of cohesive soils", Arabian J. Geosci., 11(11), 1-13. https://doi.org/10.1007/s12517-018-3592-5.
- Voottipruex, P. and Jamsawang, P. (2014), "Characteristics of expansive soils improved with cement and fly ash in Northern Thailand", Geomech. Eng., 6(5), 437-453. https://doi.org/10.12989/gae.2014.6.5.437.
- Wang, Q., Li, N., Wang, P., Hou, P.B., Zhong, X.M., Wang, J. and Wang, H.J. (2017), "Behaviors of dynamic modulus and damping ratio of loess in Gannan region of Gansu Province", Chinese J. Geotech. Eng., 39(1), 192-197. https://doi.org/10.11779/CJGE2017S1038.
- Wijeweera, H. and Joshi, R.C. (1990), "Compressive strength behavior of fine-grained frozen soils", Can. Geotech. J., 27(4), 472-483. https://doi.org/10.1139/t90-062.
- Wijeweera, H. and Joshi, R.C. (1991), "Creep behavior of finegrained frozen soils", Can. Geotech. J., 28(4), 489-502. https://doi.org/10.1139/t91-066.
- Wijeweera, H. and Joshi, R.C. (2011), "Creep behavior of finegrained frozen soils: Reply", Can. Geotech. J., 28(4), 489-502. https://doi.org/10.1139/t93-034.
- Wu, Z.J., Zhang, D., Zhao, T., Ma, J.L. and Zhao, D.Y. (2019), "An experimental research on damping ratio and dynamic shear modulus ratio of frozen silty clay of the qinghai-tibet engineering corridor", Transport. Geotech., 21, 100269. https://doi.org/10.1016/j.trgeo.2019.100269.
- Xie, D.Y. (2011), "Soil dynamics", Beijing: Higher Education Press.
- Xu, X.T., Wang, B.X., Fan, C.X. and Zhang, W.D. (2020), "Strength and deformation characteristics of silty clay under frozen and unfrozen states", Cold Reg. Sci. Technol., 172, 102982. https://doi.org/10.1016/j.coldregions.2019.102982.
- Yamamoto, Y. and Springman, S.M. (2014), "Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0℃", Can. Geotech. J., 51(10), 1178-1195. https://doi.org/10.1139/cgj-2013-0257.
- Yang, A.W., Zhong, T., Zhang, G.J. and Zhao, M.S. (2018), "Experimental study on dynamic behavior of structural soft clay under cyclic loading", Earthq. Eng. Eng. Vib., 38(1), 44-50. https://doi.org/ 10.13197/j.eeev.2018.01.44.yangaw.006.
- Yasuhara, K., Murakami, S., Song, B.W., Yokokawa, S., Adrian, F.L. and Hyde. (2003), "Postcyclic degradation of strength and stiffness for low plasticity silt", J. Geotech. Geoenviron. Eng., 129(8), 756-769. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(756).
- Zhang, J.M. (2012), "New advances in basic theories of sand dynamics", Chinese J. Geotech. Eng., 34(1), 1-50. https://doi.org/CNKI:SUN:YTGC.0.2012-01-000.
- Zheng, X.Q., Fan, G.S. and Xing, S.Y. (2002), "Movement of the moisture content in seasonal non-saturated freezing and thawing soil", Beijing: Geology Press.