DOI QR코드

DOI QR Code

Experimental research on dynamic characteristics of frozen clay considering seasonal variation

  • Xuyang Bian (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Guoxin Wang (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Yuandong Li (School of Transportation Engineering, Nanjing Tech University)
  • Received : 2023.10.23
  • Accepted : 2024.01.26
  • Published : 2024.02.25

Abstract

In order to study the soil seasonal dynamic characteristics in the regions with four distinct seasons, the soil dynamic triaxial experiments were conducted by considering the environmental temperature range from -30℃ to 30℃. The results demonstrate that the dynamic soil properties in four seasons can change greatly. Firstly, the dynamic triaxial experiments were performed to obtain the dynamic stress-strain curve, elastic modulus, and damping ratio of soil, under different confining pressures and temperatures. Then, the experiments also obtain the dynamic cohesion and internal friction angle of the clay under the initial strain, and the changing rule was summarized. Finally, the results show that the dynamic elastic modulus and dynamic cohesion will increase significantly when the clay is frozen; as the temperature continues to decrease, this increasing trend will gradually slow down, and the dynamic damping ratio will go down when the freezing temperature decreases. In this paper, the change mechanism is objectively analyzed, which verifies the reliability of the conclusions obtained from the experiment.

Keywords

Acknowledgement

This work was supported by the National Key Research and Development Program of China [2018YFD1100405];Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration [2018D19].

References

  1. Abuel-Naga, H.M., Bergado, D.T., Bouazza, A. and Pender, M.J. (2009), "Thermal conductivity of soft Bangkok clay from laboratory and field measurements", Eng. Geol., 105(3-4), 211-219. https://doi.org/10.1016/j.enggeo.2009.02.008.
  2. Aldaood, A., Bouasker, M. and Al-Mukhtar, M. (2016), "Effect of water during freeze-thaw cycles on the performance and durability of lime-treated gypseous soil", Cold Reg. Sci. Technol., 123, 155-163. https://doi.org/10.1016/j.coldregions.2015.12.008.
  3. Al-Hunaidi, M.O., Chen, P.A., Rainer, J.H. and Tremblay, M. (2011), "Shear moduli and damping in frozen and unfrozen clay by resonant column tests", Can. Geotech. J., 33(3), 510-514. https://doi.org/10.1139/t96-073.
  4. Bo, Y.F., Chen, G.X., Zhou, Z.L. and Wu, Q. (2021), "Comparison research on the normalized dynamic shear modulus and damping ratio by resonant column and cyclic triaxial tests", J. Disaster Prevent. Mitigation Eng., 41(2), 343-349. https://doi.org/10.13409/j.cnki.jdpme.20191017003.
  5. Cheng, S., Wang, Q., Fu, H.C., Wang, J.Q., Han, Y., Shen, J.J. and Lin, S. (2021), "Effect of freeze-thaw cycles on the mechanical properties and constitutive model of saline soil", Geomech. Eng., 27(4), 309-322. https://doi.org/10.12989/gae.2021.27.4.309.
  6. Chen, S.J., Ma, W., Li, G.Y., Liu, E.L. and Zhang, G. (2017), "Development and application of triaxial apparatus of frozen soil used in conjunction with medical CT", Rock Soil Mech., 38(2), 359-367. https://doi.org/10.16285/j.rsm.2017.S2.049.
  7. Christ, M., Kim, Y.C. and Park, J.B. (2009), "The Influence of temperature and cycles on acoustic and mechanical properties of frozen soils", KSCE J. Civil Eng., 13(3), 153-159. https://doi.org/10.1007/s12205-009-0153-1.
  8. Czajkowski, R.L. and Vinson, T.S. (1980), "Dynamic properties of frozen silt under cyclic loading", J. Geotech. Geotech. Eng. Division, 106(9), 963-980. https://doi.org/10.1016/0022-1694(80)90029-3.
  9. Czurda, K.A. and Hohmann, M. (1997), "Freezing effect on shear strength of clayey soils", Appl. Clay Sci., 12(1-2), 165-187. https://doi.org/10.1016/s0169-1317(97)00005-7.
  10. Esmaeili-Falak, M., Katebi, H. and Javadi, A.A. (2020), "Effect of freezing on stress-strain characteristics of granular and cohesive soils", J. Cold Reg. Eng., 34(2), 05020001. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000205.
  11. Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and young's modulus of frozen sand using artificial intelligence methods", J. Cold Reg. Eng., 33(3), 04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
  12. Fard, A.R., Moradi, G., Ghalehjough, B.K. and Abbasnejad, A. (2020), "Freezing-thawing resistance evaluation of sandy soil, improved by polyvinyl acetate and ethylene glycol monobutyl ether mixture", Geomech. Eng., 23(2), 179-187. https://doi.org/10.12989/gae.2020.23.2.179.
  13. Fredlund, D.G. (2006), "Unsaturated soil mechanics in engineering practice", J. Geotech. Geoenviron. Eng., 132(3), 286-321. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(286).
  14. Garakani, A.A., Haeri, S.M., Khosravi, A. and Habibagahi, G. (2015), "Hydro-mechanical behavior of undisturbed collapsible loessial soils under different stress state conditions", Eng. Geol., 195, 28-41. https://doi.org/10.1016/j.enggeo.2015.05.026.
  15. Girgis, N. (2019), "Experimental investigations on temperaturedependent mechanical properties of artificially frozen sandy clay soils", Montreal: Concordia University.
  16. Girgis, N., Li, B., Akhtar, S. and Courcelles, B. (2020), "Experimental study of rate-dependent uniaxial compressive behaviors of two artificial frozen sandy clay soils", Cold Reg. Sci. Technol., 180, 103166. https://doi.org/10.1016/j.coldregions.2020.103166.
  17. Guler, E. and Afacan, K.B. (2021), "Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests", Geomech. Eng., 24(2), 105-113. https://doi.org/10.12989/gae.2021.24.2.105.
  18. Hardin, B.O. and Drnevich, V.P. (1972), "Shear modulus and damping in soils: measurement and parameter effects", ASCE Soil Mech. Found. Division J., 98(6), 603-624. https://doi.org/10.1061/JSFEAQ.0001756.
  19. Ishihara, K., Yoshida, N. and Tsujino, S. (1985), "Modelling of stress-strain relations of soils in cyclic loading", Proceedings of the International Conference on Numerical Methods in Geomechanics.
  20. Jiang, W.Y., Yang, P., Chen, B. and He, W.L. (2017), "Experimental study on strength properties of artificial frozen soil in marine soft soil area of Ningbo city, China", J. Forestry Eng., 2(5), 126-131. https://doi.org/10.13360/j.issn.2096-1359.2017.05.022.
  21. Kallioglou, P., Tika, T. and Pitilakis, K. (2008), "Shear modulus and damping ratio of cohesive soils", J. Earthq. Eng., 12(6), 879-913. https://doi.org/10.1080/13632460802536552.
  22. Kang, X., Ge, L., Chang, K.T. and Kwok, A.O. (2015), "StrainControlled Cyclic Simple Shear Tests on Sand with Radial Strain Measurements", J. Mater. Civil Eng., 04015169. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001458.
  23. Kang, X., Ge, L. and Cheng, Y. (2015), "Radial strain behaviors and stress state interpretation of soil under direct simple shear", J. Test. Eval., 43(6), 1-8. https://doi.org/10.1520/JTE20130224
  24. Kim, S.Y., Kim, Y. and Lee, J.S. (2021), "Effects of frozen water content and silt fraction on unconfined compressive behavior of fill materials", Constr. Build. Mater., 266, 120912. https://doi.org/10.1016/j.conbuildmat.2020.120912.
  25. Kumar, A. and Soni, D.K. (2020), "Strength and microstructural characterisation of plastic soil under freeze and thaw cycles", Indian Geotech. J., 50, 359-371. https://doi.org/10.1007/s40098-019-00372-8.
  26. Lee, J.S., Yu, J.D., Han, K. and Kim, S.Y. (2020), "Strength characteristics of sand-silt mixtures subjected to cyclic freezingthawing-repetitive loading", Sensors, 20(18), 5381. https://doi.org/10.3390/s20185381.
  27. Le, K.N. and Ghayoomi, M. (2017), "Cyclic direct simple shear test to measure strain-dependent dynamic properties of unsaturated sand", Geotech. Test. J., 40(3), 381-395. https://doi.org/10.1520/GTJ20160128.
  28. Li, M.M., Niu, Y.H., Jiang, C., Mu, Q.S. and Li, Z.P. (2016), "Recent progress of excavation and breaking methods for frozen soil", Mech. Eng., 38(2), 126-133. https://doi.org/10.6052/1000-0879-15-049.
  29. Liu, J.K., Cui, Y.H., Liu, X. and Chang, D. (2020), "Dynamic characteristics of warm frozen soil under direct shear testcomparison with dynamic triaxial test", Soil Dyn. Earthq. Eng., 133, 106114. https://doi.org/10.1016/j.soildyn.2020.106114.
  30. Li, X.L., Wang, H.J., Zou, S.J., Ma, H.C. and Niu, Y.H. (2017), "Research state of deformation characteristics of frozen soil under cyclic loading and problems in frozen soil excavation", J. Glaciology and Geocryology, 39(1), 92-101. https://doi.org/10.7522/j.issn.1000-0240.2017.0012.
  31. Ma, W. and Su, Y.Q. (2021), "Advances on seismic safety study of the permafrost sites along Qinghai-Tibet project corridor", J. Disaster Prevent. Mitigation Eng., 41(4), 723-733. https://doi.org/10.13409/j.cnki.jdpme.2021.04.003.
  32. Mosallamy, M.E., Fattah, T. and Khouly, M.E. (2016), "Experimental study on the determination of small strain-shear modulus of loess soil", HBRC J., 12(2), 181-190. https://doi.org/10.1016/j.hbrcj.2014.11.010.
  33. Mu, R., Huang, Z.H., Pu, S.Y., Yao, Z.H. and Cheng, X. (2020), "Accumulated deformation characteristics of undisturbed red clay under cyclic loading and dynamic constitutive relationship", Rock Soil Mech., 42(2), 1-10. https://doi.org/10.16285/j.rsm.2020.0719.
  34. Oh, M.Y., Bang, K.H., Hong, S.S., Kim, Y.S. and Cho, W.J. (2011), "Freezing effects on strength characteristics of Antarctic ground under Jang Bogo station", Proceedings of the Korean Geo-Environmental Society.
  35. Okamura, M. and Tamamura, S. (2011), "Seismic stability of embankment on soft soil deposit", Int. J. Phys. Model. Geotech., 11(2), 50-57. https://doi.org/10.1680/ijpmg.2011.11.2.50.
  36. Onur, M.I., Tuncan, M. and Tuncan, A. (2014), "An experimental study for determining the shear modulus of Toyoura sand", Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology, Istanbul.
  37. Reznik, Y.M. (2007), "Influence of physical properties on deformation characteristics of collapsible soils", Eng. Geol., 92(1-2), 27-37. https://doi.org/10.1016/j.enggeo.2007.03.001.
  38. Seed, H.B. and Lee, K.L. (2002), "Liquefaction of saturated sand during cyclic loading", Geotechnical Special Publication, 92(118), 105-134. https://doi.org/10.1061/JSFEAQ.0000913.
  39. Shelman, A., Tantalla, J., Sritharan, S. and Nikolaou, S. (2014), "Characterization of seasonally frozen soils for seismic design of foundations", J. Geotech. Geoenviron. Eng., 140(7), 1-10. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001065.
  40. Shogaki, T., Nochikawa, Y. and Sakamoto, T. (2003), "Consolidation properties of Pusan new port clays", Pusan Korea: Proceedings of the Korea-Japan Joint Workshop.
  41. Tamotsu, M., Kazuhiro, O. and Koji, Y. (2004), "Geotechnical information and engineering practice for constructing manmade island in Osaka Bay", Engineering Practice and Performance of Soft Deposits, IS-OSAKA, 561-586.
  42. Teachavorasinskun, S. Thongchim, P. and Lukkunaprasit, P. (2002), "Shear modulus and damping of soft Bangkok clays", Can. Geotech. J., 39(5), 1201-1208. https://doi.org/10.1139/t02-048.
  43. Thomas, H.R. and Rees, S.W. (2010), "The numerical simulation of seasonal soil drying in an unsaturated clay soil", Int. J. Numer. Anal. Method. Geomech., 17(2), 119-132. https://doi.org/10.1002/nag.1610170204.
  44. Tong, S.J., Deng, Y.B., Chen, F., Liu, G.B. and Bao, X.M. (2018), "Study on settlement characteristics of energy piles considering temperature effect", Build. Struct., 48(21), 119-123. https://doi.org/10.19701/j.jzjg.2018.21.023.
  45. Tounsi, H., Rouabhi, A., Jahangir, E. and Guerin, F. (2020), "Mechanical behavior of frozen metapelite: Laboratory investigation and constitutive modeling", Cold Reg. Sci. Technol., 175, 103058. https://doi.org/10.1016/j.coldregions.2020.103058.
  46. Viran, P.A.G. and Binal, A. (2018), "Effects of repeated freezethaw cycles on physico-mechanical properties of cohesive soils", Arabian J. Geosci., 11(11), 1-13. https://doi.org/10.1007/s12517-018-3592-5.
  47. Voottipruex, P. and Jamsawang, P. (2014), "Characteristics of expansive soils improved with cement and fly ash in Northern Thailand", Geomech. Eng., 6(5), 437-453. https://doi.org/10.12989/gae.2014.6.5.437.
  48. Wang, Q., Li, N., Wang, P., Hou, P.B., Zhong, X.M., Wang, J. and Wang, H.J. (2017), "Behaviors of dynamic modulus and damping ratio of loess in Gannan region of Gansu Province", Chinese J. Geotech. Eng., 39(1), 192-197. https://doi.org/10.11779/CJGE2017S1038.
  49. Wijeweera, H. and Joshi, R.C. (1990), "Compressive strength behavior of fine-grained frozen soils", Can. Geotech. J., 27(4), 472-483. https://doi.org/10.1139/t90-062.
  50. Wijeweera, H. and Joshi, R.C. (1991), "Creep behavior of finegrained frozen soils", Can. Geotech. J., 28(4), 489-502. https://doi.org/10.1139/t91-066.
  51. Wijeweera, H. and Joshi, R.C. (2011), "Creep behavior of finegrained frozen soils: Reply", Can. Geotech. J., 28(4), 489-502. https://doi.org/10.1139/t93-034.
  52. Wu, Z.J., Zhang, D., Zhao, T., Ma, J.L. and Zhao, D.Y. (2019), "An experimental research on damping ratio and dynamic shear modulus ratio of frozen silty clay of the qinghai-tibet engineering corridor", Transport. Geotech., 21, 100269. https://doi.org/10.1016/j.trgeo.2019.100269.
  53. Xie, D.Y. (2011), "Soil dynamics", Beijing: Higher Education Press.
  54. Xu, X.T., Wang, B.X., Fan, C.X. and Zhang, W.D. (2020), "Strength and deformation characteristics of silty clay under frozen and unfrozen states", Cold Reg. Sci. Technol., 172, 102982. https://doi.org/10.1016/j.coldregions.2019.102982.
  55. Yamamoto, Y. and Springman, S.M. (2014), "Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0℃", Can. Geotech. J., 51(10), 1178-1195. https://doi.org/10.1139/cgj-2013-0257.
  56. Yang, A.W., Zhong, T., Zhang, G.J. and Zhao, M.S. (2018), "Experimental study on dynamic behavior of structural soft clay under cyclic loading", Earthq. Eng. Eng. Vib., 38(1), 44-50. https://doi.org/ 10.13197/j.eeev.2018.01.44.yangaw.006.
  57. Yasuhara, K., Murakami, S., Song, B.W., Yokokawa, S., Adrian, F.L. and Hyde. (2003), "Postcyclic degradation of strength and stiffness for low plasticity silt", J. Geotech. Geoenviron. Eng., 129(8), 756-769. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(756).
  58. Zhang, J.M. (2012), "New advances in basic theories of sand dynamics", Chinese J. Geotech. Eng., 34(1), 1-50. https://doi.org/CNKI:SUN:YTGC.0.2012-01-000.
  59. Zheng, X.Q., Fan, G.S. and Xing, S.Y. (2002), "Movement of the moisture content in seasonal non-saturated freezing and thawing soil", Beijing: Geology Press.