DOI QR코드

DOI QR Code

Nonlinearity effect on the dynamic behavior of the clayey basin edge

  • Received : 2023.10.29
  • Accepted : 2024.01.15
  • Published : 2024.02.25

Abstract

Investigations has shown that the correct estimation of the effective amplification period is as important as the amplification value itself. It gets more important in 2D basins. This study presents a quantitative coefficient for consideration of the nonlinearity effect in terms of amplification value and the shift in its period which is missing or ineffectively considered in the previous studies. To attain this goal, by the application of a time domain fully nonlinear method, the deviation of the more common equivalent linear results from the basin nonlinear behavior under strong ground motions is investigated quantitatively. Also, despite the increase in the damping ratio, the possibility of the increase in the amplification due to the increase in motion strength is shown. To make the results useful in engineering practice, by introducing nonlinearity ratio, the effect of the nonlinearity is quantitatively estimated for two soft and stiff clayey basins with three different depths under a set of motions scaled to two target spectrum. Results show that at the 100 m depth soft clayey basin, while the nonlinearity ratio shows a 35% deviation at the basin edge part under DD1 motion level, its effect moves to the central part with 20% effect under DD3 motion level. By the increase in depth to 150 m, the results show a decrease in the overall effect of the nonlinear behavior for both clay types. At this depth, the nonlinearity ratio gives a 30% and 17% difference on a limited distance from outcrop at the soft clayey basin under DD1 and DD3 motion levels, respectively. At the 30 m depth basins, the nonlinearity ratio shows up to 25% difference for different cases. The presented ratio would be introduced as nonlinearity coefficients for consideration of the nonlinearity effects in the codes. The presented quantitative margins will help the designer to have a better understanding of the amplification period change because of nonlinearity over 2D basin surface.

Keywords

References

  1. Abraham, J.R., Lai, C.G. and Papageorgiou, A. (2015), "Basin-effects observed during the 2012 Emilia earthquake sequence in Northern Italy", Soil Dyn. Earthq. Eng., 78, 230-242. https://doi.org/10.1016/j.soildyn.2015.08.007.
  2. Alielahi, H. and Adampira, M. (2016), "Site-specific response spectra for seismic motions in half-plane with shallow cavities", Soil Dyn. Earthq. Eng., 80, 163-167. https://doi.org/10.1016/j.soildyn.2015.10.003.
  3. Alielahi, H. and Adampira, M. (2018), "Evaluation of 2D seismic site response due to hill-cavity interaction using boundary element technique", J. Earthq. Eng., 22(6), 1137-1167. https://doi.org/10.1080/13632469.2016.1277437.
  4. Anbazhagan, P., Aditya, P. and Rashmi, H.N. (2011), "Amplification based on shear wave velocity for seismic zonation: comparison of empirical relations and site response results for shallow engineering bedrock sites", Geomech. Eng., 3(3), 189-206. https://doi.org/10.12989/gae.2011.3.3.189.
  5. Bakir, B.S., Ozkan, M.Y. and Ciliz, S. (2002), "Effects of basin edge on the distribution of damage in 1995 Dinar, Turkey earthquake", Soil Dyn. Earthq. Eng., 22, 335-345. https://doi.org/10.1016/S0267-7261(02)00015-5.
  6. Bordoni, P., Gori, S., Akinci, A., Visini, F., Sgobba, S., Pacor, F., Cara, F., Pampanin, S., Milana, G. and Doglioni, C. (2023), "A site-specific earthquake ground response analysis using a fault-based approach and nonlinear modeling: The case pente site (Sulmona, Italy)", Eng. Geol., 314, 106970, https://doi.org/10.1016/j.enggeo.2022.106970.
  7. Chandran, D. and Anbazhagan, P. (2020), "2D nonlinear site response analysis of typical stiff and soft soil sites at shallow bedrock region with low to medium seismicity", J. Appl. Geophys., 179, 104087, https://doi.org/10.1016/j.jappgeo.2020.104087..
  8. Cundall P.A. et al. (1980), NESSI-soil structure interaction program for dynamic and static problems. Norwegian Geotechnical Institute, Report 51508-9.
  9. Cundall, P.A. (2008), FLAC3D Manual: a computer program for fast Lagrangian analysis of Continua (Version 4.0). Minneapolis, MN, USA.
  10. Field, E.H., Johnson, P.A., Beresnev, I.A. and Zeng, Y. (1997), "Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake.", Nature, 390, 599-602. https://doi.org/10.1038/37586
  11. Gelagoti, F., Kourkoulis, R., Anastasopoulos, I., Tazoh, T. and Gazetas, G. (2010), "Seismic wave propagation in a very soft alluvial valley: sensitivity to ground-motion details and soil nonlinearity, and generation of a parasitic vertical component", Bull. Seismol. Soc. Am., 100(6), 3035-3054. https://doi.org/10.1785/0120100002.
  12. Griffiths, S., Cox, B. and Rathje, E. (2016), "Challenges associated with site response analyses for soft soils subjected to high-intensity input ground motions", Soil Dyn. Earthq. Eng., 85, 1-10, https://doi.org/10.1016/j.soildyn.2016.03.008.
  13. Iyisan, R. and Khanbabazadeh, H. (2013), "A numerical study on the basin edge effect on soil amplification", Bull. Earthq. Eng., 11, 1305-1323, https://doi.org/10.1007/s10518-013-9451-6.
  14. Jakka, R.S., Hussain, M.D. and Sharma, M.L. (2015), "Effects on amplification of strong ground motion due to deep soils", Geomech. Eng., 8(5), 663-674. https://doi.org/10.12989/gae.2015.8.5.663.
  15. Kamalian, M., Jafari, M.K., Sohrabi-Bidar, A., Razmkhah, A. and Gatmiri, B. (2006), "Time domain two-dimensional site response analysis of non-homogeneous topographic structures by a hybrid BE/FE method", Soil Dyn. Earthq. Eng., 26, 753-765. https://doi.org/10.1016/j.soildyn.2005.12.008.
  16. Kamiyama, M. and Satoh, T. (2002), "Seismic response analysis of laterally inhomogeneous ground with emphasis on strains", Soil Dyn. Earthq. Eng., 22, 877-884. https://doi.org/10.1016/S0267-7261(02)00110-0.
  17. Khanbabazadeh, H., Hasal, M.E. and Iyisan, R. (2019), "2D seismic response of the Duzce Basin, Turkey", Soil Dyn. Earthq. Eng., 125, 105754. https://doi.org/10.1016/j.soildyn.2019.105754.
  18. Khanbabazadeh, H. and Iyisan, R. (2014a), "A numerical study on the 2D behavior of clayey basins", Soil Dyn. Earthq. Eng., 66, 31-41. https://doi.org/10.1016/j.soildyn.2014.06.029.
  19. Khanbabazadeh, H. and Iyisan, R. (2014b), "A numerical study on the 2D behavior of the single and layered clayey basins", Bull. Earthq. Eng., 12, 1515-1536, https://doi.org/10.1007/s10518-014-9590-4.
  20. Khanbabazadeh, H., Iyisan, R., Ansal, A. and Zulfikar, C. (2018), "Nonlinear dynamic behavior of the basins with 2D bedrock", Soil Dyn. Earthq. Eng., 107, 108-115, https://doi.org/10.1016/j.soildyn.2018.01.011.
  21. Khanbabazadeh, H., Iyisan, R., Ansal, A. and Hasal, M.E. (2016), "2D non-linear seismic response of the Dinar basin,Turkey", Soil Dyn. Earthq. Eng., 89, 5-11. https://doi.org/10.1016/j.soildyn.2016.07.021.
  22. Khanbabazadeh, H., Iyisan, R., Ozaslan, B. (2022), "2D seismic response of shallow sandy basins subjected to obliquely incident waves", Soil Dyn. Earthq. Eng., 153, 107080. Doi.org/10.1016/j.soildyn.2021.107080.
  23. Khanbabazadeh, H., Iyisan, R. and Ozaslan, B. (2022), "Seismic behavior of the shallow clayey basins subjected to obliquely incident wave", Geomech. Eng., 31(2), 183-195. https://doi.org/10.12989/gae.2022.31.2.183.
  24. Khanbabazadeh, H., Zulfika,r A.C. and Yesilyurt, A. (2020), "Basin edge effect on industrial structures damage pattern at clayeybasins", Geomech. Eng., 23(6), 575-585. https://doi.org/10.12989/gae.2020.23.6.575.
  25. Khoshghalb, A., Shafee, A., Tootoonchi, A., Ghaffaripour, O. and Jazaeri, S.A. (2020), "Application of the smoothed point interpolation methods in computational geomechanics: A comparative study", Comput. Geotech,. 126, 103714. https://doi.org/10.1016/j.compgeo.2020.103714.
  26. Kozo Keikaku Inc, (1995), "SuperFLUSH/3D Manual".
  27. Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech., 95(4), 859-877. https://doi.org/10.1061/JMCEA3.0001144
  28. Makra, K., Chavez-Garcia, F.J., Raptakis, D. and Pitilakis, K. (2005), "Parametric analysis of the seismic response of a 2D sedimentary valley: implications for code implementations of complex site effects", Soil Dyn. Earthq. Eng., 25, 303-315. https://doi.org/10.1016/j.soildyn.2005.02.003.
  29. Makra, K. and Chavez-Garci, F.J. (2016), "Site effects in 3D basins using 1D and 2D models: an evaluation of the differences based on simulations of the seismic response of Euroseistest", Bull. Earthq. Eng., 14, 1177-1194. https://doi.org/10.1007/s10518-015-9862-7.
  30. Madiai, C., Facciorusso, J. and Gargini, E. (2017), "Numerical modeling of seismic site effects in a shallow alluvial basin of the northern Apennines (Italy)", Bull. Seismol. Soc. Am., 107, 2094-2105. https://doi.org/10.1785/0120160293.
  31. Madiai, C., Facciorusso, J., Gargini, E. and Baglione, M. (2016), "1D versus 2D site effects from numerical analyses on a cross section at Barberino di Mugello (Tuscany, Italy)", Procedia Eng., 158, 499-504. https://doi.org/10.1016/j.proeng.2016.08.479.
  32. Manakou, M.V., Raptakis, D.G., Chavez-Garci, F.J., Apostolidis, P.I. and Pitilakis K.D. (2010), "3D soil structure of the Mygdonian basin for site response analysis", Soil Dyn. Earthq. Eng., 30, 1198-1211. https://doi.org/10.1016/j.soildyn.2010.04.027.
  33. Mayoral, J.M., Asimaki, D., Tepalcapa, S., Wood, C., Sancha, A.R., Hutchinson, T., Franke, K. and Montalva, G. (2019), "Site effects in Mexico City basin: Past and present", Soil Dyn. Earthq. Eng., 121, 369-382. https://doi.org/10.1016/j.soildyn.2019.02.028.
  34. Nagashima, F., Matsushima, S., Kawase, H., Sanchez-Sesma, F.J., Hayakawa, T., Satoh, T. and Oshima, M. (2014), "Application of horizontal-to-vertical spectral ratios of earthquake ground motions to identify subsurface structures at and around the K-NET site in Tohoku, Japan", Bull. Seismol. Soc. Am., 104(5), 2288-2302. https://doi.org/10.1785/0120130219.
  35. Ozaslan, B., Iyisan, R., Hasal, M.E., Khanbabazadeh, H. and Yamanaka, H. (2022), "Assessment of the design spectrum with aggravation factors by 2D nonlinear numerical analyses: a case study in the Gemlik Basin, Turkey", Bull. Earthq. Eng., 20(3), 1371-1395. https://doi.org/10.1007/s10518-021-01296-6.
  36. Pelekis, P., Batilas, A., Pefani, E., Vlachakis, V. and Athanasopoulos, G. (2017), "Surface topography and site stratigraphy effects on the seismic response of a slope in the Achaia-Ilia (Greece) 2008 Mw6.4 earthquake", Soil Dyn. Earthq. Eng., 100, 538-554. https://doi.org/10.1016/j.soildyn.2017.05.038.
  37. Riga, E., Makra, K. and Pitilakisa, K. (2018), "Investigation of the effects of sediments inhomogeneity and nonlinearity on aggravation factors for sedimentary basins", Soil Dyn. Earthq. Eng., 110, 284-299. https://doi.org/10.1016/j.soildyn.2018.01.016.
  38. Rodriguez-Plata, R., Ozcebe, A.G., Smerzini, C. and Lai, C.G. (2021), "Aggravation factors for 2D site effects in sedimentary basins: The case of Norcia, central Italy", Soil Dyn. Earthq. Eng., 149, 106854. https://doi.org/10.1016/j.soildyn.2021.106854.
  39. Rong, M., Wang, Z., Woolery, E.W., Lyu, Y., Li, X. and Li, S. (2016), "Nonlinear site response from the strong ground-motion recordings in western China", Soil Dyn. Earthq. Eng., 82, 99-110. https://doi.org/10.1016/j.soildyn.2015.12.001.f.
  40. Roy, N. and Sahu, R.B. (2012), "Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata", Geomech. Eng., 4(1), 1-18. https://doi.org/10.12989/gae.2012.4.1.001.
  41. Saenz, M., Sierra, C., Vergara, J., Jaramillo, J. and Gomez, J. (2019), "Site specific analysis using topography conditioned response spectra", Soil Dyn. Earthq. Eng., 123, 470-497. https://doi.org/10.1016/j.soildyn.2019.03.004.
  42. Safak, E. (2001), "Local site effects and dynamic soil behavior", Soil Dyn. Earthq. Eng., 21, 453-458. https://doi.org/10.1016/S0267-7261(01)00021-5.
  43. Saffarian, M.A. and. Bagheripour, M.H. (2014)," Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part I: basic formulation and linear HFTD", Geomech. Eng., 6(6), 517-530. https://doi.org/10.12989/gae.2014.6.6.517.
  44. Salehi Dezfooli, M., Khoshghalb, A. and Shafee, A. (2022), "An automatic adaptive edge-based smoothed point interpolation method for coupled flow-deformation analysis of saturated porous media", Comput. Geotech., 145, 104672. https://doi.org/10.1016/j.compgeo.2022.104672.
  45. Satoh, T., Kawase, H. and Sato, T. (1995) "Nonlinear behavior of soil sediments identified by using borehole records observed at the Ashigaravalley, Japan", Bull Seismol Soc Am, 85:1821-34. https://doi.org/10.1785/BSSA0850061821
  46. Semblat, J.F., Dangla, P., Khama, M. and Duva, A.M. (2002), "Seismic site effects for shallow and deep alluvial basins: In-depth motion and focusing effect", Soil Dyn. Earthq. Eng., 22, 849-854. https://doi.org/10.1016/S0267-7261(02)00107-0.
  47. Semblat, J.F., Duval, A.M. and Dangla, P. (2000), "Numerical Analysis of Seismic Wave Amplification in Nice (France) and comparisons with experiments", Soil Dyn. Earthq. Eng., 19(5), 347-362. https://doi.org/10.1016/S0267-7261(00)00016-6.
  48. Shafee, A. and Khoshghalb, A. (2021), "An improved node-based smoothed point interpolation method for coupled hydromechanical problems in geomechanics", Comput. Geotech., 139, 104415. https://doi.org/10.1016/j.compgeo.2021.104415
  49. Shafee, A. and Khoshghalb, A. (2022), "Particle node-based smoothed point interpolation method with stress regularisation for large deformation problems in geomechanics", Comput. Geotech., 141, 104494. https://doi.org/10.1016/j.compgeo.2021.104494.
  50. Shani-Kadmiel S., Tsesarsky M., Louie J. N., Gvirtzman Z. (2012), "Simulation of seismic-wave propagation through geometrically complex basins: the Dead Sea Basin", Bull. Seismol. Soc. Am. 102(4), 1729-1739. https://doi.org/10.1785/0120110254.
  51. Shiuly, A., Sahu, R.B. and Mandal, S. (2015), "Seismic microzonation of Kolkata", Geomech. Eng., 9(2), 125-144. https://doi.org/10.12989/gae.2015.9.2.125.
  52. Silahtar, A. and Kanbur, M.Z. (2021), "1D nonlinear site response analysis of the Isparta Basin (Southwestern Turkey) with surface wave (ReMi) and borehole data", Environ. Earth Sci., 80, 268. https://doi.org/10.1007/s12665-021-09551-4.
  53. Sonmezer, Y.B., Bas, S., Isik, N.S. and Akbas, S.O. (2018), "Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale", Geomech. Eng., 16(4), 435-448. DOI:http://dx.doi.org/10.12989/gae.2018.16.4.435
  54. Sonmezer, Y.B. and Celiker, M. (2020), "Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect", Geomech. Eng., 20(2), 131-146. https://doi.org/10.12989/gae.2020.20.2.131.
  55. Stamati, O., Klimis, N. and Lazaridis, T. (2016), "Evidence of complex site effect sand soil non-linearity numerically estimated by 2D vs 1D seismic response analyses in the city of Xanthi", Soil Dyn. Earthq. Eng., 87, 101-115. https://doi.org/10.1016/j.soildyn.2016.05.006.
  56. Stanko, D., Gulerce, Z., Markusic, S. and Salic, R. (2019), "Evaluation of the site amplification factors estimated by equivalent linear site response analysis using time series and random vibration theory based approaches", Soil Dyn. Earthq. Eng., 117, 16-29. https://doi.org/10.1016/j.soildyn.2018.11.007.
  57. Wen, K.L., Chang, T.M. and Lin, C.M. (2006), "Identification of nonlinear site response using the H/V spectral ratiomethod", Terr. Atmos. Ocean Sci., 17(3), 533-546. https://doi.org/10.3319/TAO.2006.17.3.533(T).
  58. Yniesta, S., Brandenberg, S.J. and Shafiee, A. (2017), "ARCS: A one dimensional nonlinear soil model for ground response analysis", Soil Dyn. Earthq. Eng., 102, 75-85. https://doi.org/10.1016/j.soildyn.2017.08.015
  59. Zhang. J. and Zhao, J.X. (2009), "Response spectral amplification ratios from 1- and 2 dimensional nonlinear soil site models", Soil Dyn. Earthq. Eng., 29, 563-573. https://doi.org/10.1016/j.soildyn.2008.06.006.
  60. Zhu, C., Chavez-Garcia, F.J., Thambiratnam, D. and Gallage, C. (2018), "Quantifying the edge-induced seismic aggravation in shallow basins relative to the 1D SH model", Soil Dyn. Earthq. Eng., 115, 402-412. https://doi.org/10.1016/j.soildyn.2018.08.025.
  61. Zhu, C. and Thambiratnam, D. (2016), "Interaction of geometry and mechanical property of trapezoidal sedimentary basins with incident SH waves", Bull. Earthq. Eng,, 14, 2977-3002. https://doi.org/10.1007/s10518-016-9938-z