과제정보
The research work described herein was funded by the National Natural Science Foundation of China (Grant No. 51979122).
참고문헌
- Abbo, A.J., Lyamin, A.V., Sloan, S.W. and Hambleton, J.P. (2011), "A C2 continuous approximation to the Mohr-Coulomb yield surface", Int. J. Solids Struct., 48, 3001-3010. https://doi.org/10.1016/j.ijsolstr.2011.06.021.
- Amat, S., Levin, D., Ruiz-Alvarez, J. and Yanez, D.F. (2023), "A new B-spline type approximation method for non-smooth functions", Appl. Math. Lett., 141, 108628. https://doi.org/10.1016/j.aml.2023.108628.
- Argani, L.P. and Gajo, A. (2021), "A new isotropic hyper-elasticity model for enhancing the rate of convergence of Mohr-Coulomb-like constitutive models and application to shallow foundations and trapdoors", Comput. Geotech., 132, 103957. https://doi.org/10.1016/j.compgeo.2020.103957.
- Bentley Systems Inc. (2022), PLAXIS CONNECT Edition V22.01 Material Models Manual, Bentley Systems Inc., Exton, PA, USA.
- Benz, T. (2007), "Small-strain stiffness of soils and its numerical consequences", Ph.D. Dissertation, Universitaet Stuttgart, Germany.
- Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65.
- Dassault Systemes Simulia Corp. (2019), SIMULIA User Assistance 2020. Dassault Systemes Simulia Corp., Johnston, RI, USA.
- De Souza Neto, E.A., Peric, D. and Owen, D.R.J. (2008), Computational Methods for Plasticity: Theory and Applications, John Wiley and Sons Ltd, Chichester, United Kingdom.
- Djedid, A. (1986), "Etude du comportement non-draine du sable", in Memoire de D.E.A., Institut de Mecanique de Grenoble, Grenoble, France. (in French)
- Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Soc. Hungarian Architects Eng., 7, 355-358.
- Jia, S.P., Chen, W., Yang, J.P. and Chen, P.S. (2010), "An elastoplastic constitutive model based on modified Mohr-Coulomb criterion and its numerical implementation", Rock Soil Mech., 31(7), 2051-2058.
- Kawa, M., Pula, W. and Truty, A. (2021), "Probabilistic analysis of the diaphragm wall using the hardening soil-small (HSs) model", Eng. Struct., 232, 111869. https://doi.org/10.1016/j.engstruct.2021.111869.
- Koiter, W.T. (1953), "Stress-strain relations, uniqueness and variational theorems for elastoplastic materials with singular yield surface", Q. Appl. Math., 11, 350-354. https://doi.org/10.1090/qam/59769
- Lester, A.M. and Sloan, S.W. (2018), "A smooth hyperbolic approximation to the Generalised Classical yield function, including a true inner rounding of the Mohr-Coulomb deviatoric section", Comput. Geotech., 104, 331-357. https://doi.org/10.1016/j.compgeo.2017.12.002.
- Li, C., Li, C., Zhao, R. and Zhou, L. (2021a), "A strength criterion for rocks", Mech. Mater., 154, 103721. https://doi.org/10.1016/j.mechmat.2020.103721.
- Li, C., Li, C. and Zheng, H. (2021b), "Subspace tracking method for non-smooth yield surface", Comput. Math. Appl., 90, 125-134. https://doi.org/10.1016/j.camwa.2021.03.012.
- Mahetaji, M., Brahma, J. and Vij, R.K. (2023), "A new extended Mohr-Coulomb criterion in the space of three-dimensional stresses on the in-situ rock", Geomech. Eng., 32(1), 49-68. https://doi.org/10.12989/gae.2023.32.1.049.
- Matsuoka, H. and Nakai, T. (1985), "Relationship among Tresca, Mises, Mohr-Coulomb and Matsuoka-Nakai failure criteria", Soils Found., 25(4), 123-128. https://doi.org/10.3208/sandf1972.25.4_123.
- Menetrey, P. and Willam, K. (1995), "Triaxial failure criterion for concrete and its generalization", ACI Struct. J., 92(3), 311-318.
- Peric, D. and de Souza Neto, E.A. (1999), "A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space", Comput. Method. Appl. M., 171(3), 463-489. https://doi.org/10.1016/S0045-7825(98)00221-7.
- Pramthawee, P., Jongpradist, P. and Kongkitkul, W. (2011), "Evaluation of hardening soil model on numerical simulation of behaviors of high rockfill dams", Songklanakarin J. Sci. Technol., 33(3), 325-334.
- Pramthawee, P., Jongpradist, P. and Sukkarak, R. (2017), "Integration of creep into a modified hardening soil model for time-dependent analysis of a high rockfill dam", Comput. Geotech., 91, 104-116. http://dx.doi.org/10.1016/j.compgeo.2017.07.008.
- Schanz, T., Vermeer P.A. and Bonnier, P.G. (1999), "The hardening soil model: formulation and verification", Proceedings of the Beyond 2000 in Computational Geotechnics - 10 Years of PLAXIS, Balkema, Rotterdam, the Netherlands.
- Sui, C.Y., Shen, Y.S., Wen, Y.M. and Gao B. (2021), "Application of the modified Mohr-Coulomb yield criterion in seismic numerical simulation of tunnels", Shock Vib., article ID 9968935. https://doi.org/10.1155/2021/9968935.
- Sukkarak, R. Likitlersuang, S., Jongpradist, P. and Jamsawang, P. (2021), "Strength and stiffness parameters for hardening soil model of rockfill materials", Soils Found., 61, 1597-1614. https://doi.org/10.1016/j.sandf.2021.09.007.
- Surarak, C., Likitlersuang, S., Wanatowski, D., Balasubramaniam, A., Oh, E. and Guan, H. (2012), "Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays", Soils Found., 52(4), 682-697. http://dx.doi.org/10.1016/j.sandf.2012.07.009.
- Sukkarak, R., Pramthawee, P. and Jongpradist, P. (2017), "A modified elasto-plastic model with double yield surfaces and considering particle breakage for the settlement analysis of high rockfill dams", KSCE J. Civil Eng., 21(3), 734-745. https://doi.org/10.1007/s12205-016-0867-9.
- Sukkarak, R., Pramthawee, P., Jongpradist, P., Kongkitkul, W. and Jamsawang, P. (2018), "Deformation analysis of high CFRD considering the scaling effects", Geomech. Eng., 14(3), 211-224. https://doi.org/10.12989/gae.2018.14.3.211.
- Wang, C., Ding, W. and Qiao, Y. (2014), "Development and application of hardening soil constitutive model in FLAC3D", Chinese J. Rock Mech. Eng., 33(1), 199-208. https://doi.org/10.13722/j.cnki.jrme.2014.01.015. (in Chinese)
- Wang, Z. (2020), "A modified Mohr-Coulomb criterion for rocks with smooth tension cutoff", Proceedings of the IOP Conf. Ser.: Earth Environ. Sci., 525, 012027. https://doi.org/10.1088/1755-1315/525/1/012027.
- Woo, S.I. (2023), "Critical state-based Mohr-Coulomb bounding surface model for sand under monotonic shearing", Adv. Civil Eng., article ID 8703610. https://doi.org/10.1155/2023/8703610.
- Wu, X. and Vanapalli, S.K. (2022), "Three-dimensional modeling of the mechanical behavior of a single pile in unsaturated expansive soils during infiltration", Comput. Geotech., 145, 104696. https://doi.org/10.1016/j.compgeo.2022.104696.
- Zhang, S., Wang, Q. and Zhou, W. (2019), "Implementation of the Tresca yield criterion in finite element analysis of burst capacity of pipelines", Int. J. Pressure Vessels Piping, 172, 180-187. https://doi.org/10.1016/j.ijpvp.2019.03.037.
- Zienkiewicz, O.C. and Pande, G.W. (1977). "Some useful forms of isotropic yield surfaces for soil and rock mechanics", Finite Element in Geomechanics, Balkema, Rotterdam, the Netherlands, 179-190.