DOI QR코드

DOI QR Code

Black soldier fly larvae meal supplementation in a low protein diet reduced performance, but improved nitrogen efficiency and intestinal morphology of duck

  • Rinanti Eka Aldis (Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada) ;
  • Muhlisin Muhlisin (Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada) ;
  • Zuprizal Zuprizal (Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada) ;
  • Heru Sasongko (Animal Production Department, Faculty of Animal Science, Universitas Gadjah Mada) ;
  • Chusnul Hanim (Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada) ;
  • Muhsin Al Anas (Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada)
  • 투고 : 2023.07.12
  • 심사 : 2023.10.23
  • 발행 : 2024.04.01

초록

Objective: Reduced crude protein (CP) diets offer potential benefits such as optimized feed efficiency, reduced expenses, and lower environmental impact. The objective of this study was to evaluate black soldier fly larvae (BSFL) meal on a low-protein diet for duck performance, blood biochemical, intestinal morphology, gastrointestinal development, and litter. Methods: The experiment was conducted for 42 days. A total of 210-day-old male hybrid ducklings (5 replicate pens, 7 ducks per pen) were randomly assigned to 6 dietary treatments (3×2 factorial arrangements) in randomized design. The factors were CP level (18%, 16%, 14%) and protein source feed soybean meals (SBM), black soldier fly larvae meals (BSFLM). Results: Reduced dietary CP levels significantly decreased growth performance, feed intake, the percentage of nitrogen, pH (p<0.05), and tended to suppress ammonia in litter (p = 0.088); increased lipid concentration; and enhanced relative weight of gastrointestinal tracts (p<0.05). In addition, dietary BSFL as a source of protein feed significantly increased lipid concentration and impacted lowering villus height and crypt depth on jejunum (p<0.05). Conclusion: In conclusion, the use of BSFLM in a low-protein diet was found to have a detrimental effect on growth performance. However, the reduction of 2% CP levels in SBM did not have a significant impact on growth performance but decreased nitrogen and ammonia concentrations.

키워드

과제정보

The authors are grateful to Research Grant from Agrotechnology Innovation Center, Universitas Gadjah Mada 2022 that supported the funding of this research with letter of assignment No: 3721/UN1.P.III/PIAT/PT.01.05/2022.

참고문헌

  1. Djunaidi IH. Alternative poultry feed ingredients (a thoughtful solution) [Internet]. Jakarta Selatan, Indonesia: Ikatan Sarjana Peternakan Indonesia?; c2021 [cited 2022 Aug 3]. Available from: https://pb-ispi.org/alternatif-penyediaan-bahan-pakanunggas-sebuah-pemikiran-solusi/
  2. International Trade Administration U.S. Indonesia-Country Commercial Guide: This is a best prospect industry sector for this country. Includes a market overview and trade data [Internet]. Washington, DC, USA: International Trade Administration; c2022 [cited 2023 Sept 20]. Available from: https://www.trade.gov/country-commercial-guides/indonesiaagriculture#
  3. Taherzadeh O, Caro D. Drivers of water and land use embodied in international soybean trade. J Clean Prod 2019;223:83-93. https://doi.org/10.1016/j.jclepro.2019.03.068
  4. Astuti DA, Wiryawan KG. Black soldier fly as feed ingredient for ruminants. Anim Biosci 2022;35:356-63. https://doi.org/10.5713/ab.21.0460
  5. Schiavone A, De Marco M, Martinez S, et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J Anim Sci Biotechnol 2017;8:51. https://doi.org/10.1186/s40104-017-0181-5
  6. Tyshko NV, Zhminchenko VM, Nikitin NS, et al. The comprehensive studies of Hermetia illucens larvae protein's biological value. Probl Nutr 2021;90:49-58. https://doi.org/10.33029/0042-8833-2021-90-5-49-58
  7. Heuel M, Sandrock C, Leiber F, et al. Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poult Sci 2021;100:101034. https://doi.org/10.1016/j.psj.2021.101034
  8. Elahi U, Xu CC, Wang J, et al. Insect meal as a feed ingredient for poultry. Anim Biosci 2022;35:332-46. https://doi.org/10.5713/ab.21.0435
  9. Gariglio M, Dabbou S, Crispo M, et al. Effects of the dietary inclusion of partially defatted black soldier fly (Hermetia illucens) meal on the blood chemistry and tissue (spleen, liver, thymus, and bursa of fabricius) histology of muscovy ducks (Cairina moschata domestica). Animals 2019;9:307. https://doi.org/10.3390/ani9060307
  10. Rostagno HS, Albino LFT, Hannas MI, et al. Brazilian tables for poultry and swine: composition of feedstuffs and nutritional requirements. 4th ed. Vicosa MG, Brazil: Federal University; 2017. 488 p.
  11. Tansil F, Pezzali JG, Cargo-Froom C, et al. Evaluation of standardized ileal digestibility of amino acids and metabolic availability of methionine, using the indicator amino acid oxidation method, in black soldier fly larvae (Hermetia illucens) meal fed to growing pigs. J Anim Sci 2023;101:skac420. https://doi.org/10.1093/jas/skac420
  12. Sanchez-Muros MJ, Barroso FG, Manzano-Agugliaro F. Insect meal as renewable source of food for animal feeding: a review. J Clean Prod 2014;65:16-27. https://doi.org/10.1016/j.jclepro.2013.11.068
  13. Dorper A, Veldkamp T, Dicke M. Use of black soldier fly and house fly in feed to promote sustainable poultry production. J Insects Food Feed 2021;7:761-80. https://doi.org/10.3920/JIFF2020.0064
  14. Van Huis A. Potential of insects as food and feed in assuring food security. Annu Rev Entomol 2013;58:563-83. https://doi.org/10.1146/annurev-ento-120811-153704
  15. Makkar HPS, Gilles T, Valerie H, Ankers P. State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 2014;197:1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
  16. Mottet A, Tempio G. Global poultry production: current state and future outlook and challenges. Worlds Poult Sci J 2017;73:245-56. https://doi.org/10.1017/S0043933917000071
  17. Santonja GG, Georgitzikis K, Scalet BM, Montobbio P, Roudier S, Sancho LD. Best available techniques (BAT) reference document for the intensive rearing of poultry or pigs. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control), Publications Office. EUR 28674 EN. 2017. https://doi.org/10.2760/020485
  18. van Harn J, Dijkslag MA, Van Krimpen MM. Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poult Sci 2019;98:4868-77. https://doi.org/10.3382/ps/pez229
  19. Chrystal PV, Moss AF, Khoddami A, Naranjo VD, Selle PH, Liu SY. Effects of reduced crude protein levels, dietary electrolyte balance, and energy density on the performance of broiler chickens offered maize-based diets with evaluations of starch, protein, and amino acid metabolism. Poult Sci 2020;99:1421-31. https://doi.org/10.1016/j.psj.2019.10.060
  20. Xie M, Jiang Y, Tang J, et al. Effects of low-protein diets on growth performance and carcass yield of growing White Pekin ducks. Poult Sci 2017;96:1370-5. https://doi.org/10.3382/ps/pew349
  21. Baeza E, Leclercq B. Use of industrial amino acids to allow low protein concentrations in finishing diets for growing Muscovy ducks. Br Poult Sci 1998;39:90-6. https://doi.org/10.1080/00071669889448
  22. Association of Official Analytical Chemists (AOAC). Official method of analysis of The Association of Official Analytical Chemists. 12th Ed. Washington DC, USA: AOAC; 2005.
  23. Li Y, Cai HY, Liu GH, et al. Effects of stress simulated by dexamethasone on jejunal glucose transport in broilers. Poult Sci 2009;88:330-7. https://doi.org/10.3382/ps.2008-00257
  24. Weatherburn MW. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 1967;39:971-4. https://doi.org/10.1021/ac60252a045
  25. Sigolo S, Zohrabi Z, Gallo A, Seidavi A, Prandini A. Effect of a low crude protein diet supplemented with different levels of threonine on growth performance, carcass traits, blood parameters, and immune responses of growing broilers. Poult Sci 2017;96:2751-60. https://doi.org/10.3382/ps/pex086
  26. van Emous RA, Winkel A, Aarnink AJA. Effects of dietary crude protein levels on ammonia emission, litter and manure composition, N losses, and water intake in broiler breeders. Poult Sci 2019;98:6618-25. https://doi.org/10.3382/ps/pez508
  27. Wang D, Li S, Zhang KY, et al. Protease supplementation attenuates the intestinal health damage caused by low-protein diets in Pekin ducks. Poult Sci 2020;99:6630-42. https://doi.org/10.1016/j.psj.2020.10.012
  28. Wang QD, Zhang KY, Zhang Y, et al. Effects of dietary protein levels and protease supplementation on growth performance, carcass traits, meat quality, and standardized ileal digestibility of amino acid in Pekin ducks fed a complex diet. Poult Sci 2020;99:3557-66. https://doi.org/10.1016/j.psj.2020.03.047
  29. Namroud NF, Shivazad M, Zaghari M. Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level, and excreta characteristics of broiler chicks. Poult Sci 2008;87:2250-8. https://doi.org/10.3382/ps.2007-00499
  30. Widyaratne GP, Drew MD. Effects of protein level and digestibility on the growth and carcass characteristics of broiler chickens. Poult Sci 2011;90:595-603. https://doi.org/10.3382/ps.2010-01098
  31. Jiang JF, Song XM, Huang X, et al. Effects of alfalfa meal on growth performance and gastrointestinal tract development of growing ducks. Asian-Australas J Anim Sci 2012;25:1445-50. https://doi.org/10.5713/ajas.2012.12190
  32. Facey H, Kithama M, Mohammadigheisar M, Huber LA, Shoveller AK, Kiarie EG. Complete replacement of soybean meal with black soldier fly larvae meal in feeding program for broiler chickens from placement through to 49 days of age reduced growth performance and altered organs morphology. Poult Sci 2023;102:102293. https://doi.org/10.1016/j.psj.2022.102293
  33. Law FL, Zulkifli I, Soleimani AF, Liang JB, Awad EA. The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment. Asian-Australas J Anim Sci 2018;31:1291-300. https://doi.org/10.5713/ajas.17.0581
  34. Gong LM, Qiao S, Li D, Ma YX, Liu YL. Growth performance, carcass characteristics, nutrient digestibility and serum biochemical parameters of broilers fed low-protein diets supplemented with various ratios of threonine to lysine. Asian-Australas J Anim Sci 2005;18:1164-70. https://doi.org/10.5713/ajas.2005.1164
  35. Kamran Z, Sarwar M, Un-Nisa M, Nadeem MA, Mahmood S. Effect of low levels of dietary crude protein with constant metabolizable energy on nitrogen excretion, litter composition and blood parameters of broilers. Int J Agric Biol 2010;12:401-5.
  36. Ewald N, Vidakovic A, Langeland M, Kiessling A, Sampels S, Lalander C. Fatty acid composition of black soldier fly larvae (Hermetia illucens) - Possibilities and limitations for modification through diet. Waste Manag 2020;102:40-7. https://doi.org/10.1016/j.wasman.2019.10.014
  37. Behera NK, Babu LK, Sahoo SK, et al. Effect of feeding different levels of protein on mortality, carcass characteristics, biochemical parameter, time motion study and economics of desi ducks under intensive system of rearing. Asian J Anim Sci 2016;10:106-12. https://doi.org/10.3923/ajas.2016.106.112
  38. Shazali N, Loh TC, Foo HL, Samsudin AA. Gut microflora and intestinal morphology changes of broiler chickens fed reducing dietary protein supplemented with lysine, methionine, and threonine in tropical environment. Rev Bras Zootec 2019;48:e20170265. https://doi.org/10.1590/rbz4820170265
  39. Gu X, Li D. Effect of dietary crude protein level on villous morphology, immune status and histochemistry parameters of digestive tract in weaning piglets. Anim Feed Sci Technol 2004;114:113-26. https://doi.org/10.1016/j.anifeedsci.2003.12.008
  40. Central Bureau for Livestock Feeding (CVB). CVB Feed Table 2018: Chemical composition and nutritional values of feedstuffs. Lelystad, The Netherlands: Central Livestock Feeding; 2018.
  41. Wijtten PJA, Hangoor E, Sparla JKWM, Verstegen MWA. Dietary amino acid levels and feed restriction affect small intestinal development, mortality, and weight gain of male broilers. Poult Sci 2010;89:1424-39. https://doi.org/10.3382/ps.2009-00626
  42. Kleyn R, Chrystal P. Broiler nutrition: Masterclass. England: Context Products Ltd.; 2020.
  43. Singh Y, Amerah AM, Ravindran V. Whole grain feeding: Methodologies and effects on performance, digestive tract development and nutrient utilisation of poultry. Anim Feed Sci Technol 2014;190:1-18. https://doi.org/10.1016/j.anifeedsci.2014.01.010
  44. Truong HH, Moss AF, Liu SY, Selle PH. Pre- and post-pellet whole grain inclusions enhance feed conversion efficiency, energy utilisation and gut integrity in broiler chickens offered wheat-based diets. Anim Feed Sci Technol 2017;224:115-23. https://doi.org/10.1016/j.anifeedsci.2016.12.001
  45. Jacobs C, Parsons CM. The effects of coarse ground corn, whole sorghum, and a prebiotic on growth performance, nutrient digestibility, and cecal microbial populations in broilers fed diets with and without corn distillers dried grains with solubles. Poult Sci 2013;92:2347-57. https://doi.org/10.3382/ps.2012-02928
  46. Auza FA, Purwanti S, Syamsu JA, Natsir A. The effect of substitution of fish meal by maggot meal (Hermetia illucens L) on the relatif length of digestive tract, histomorphology of small intestines, and the percentage of carcass parts in native chickens. J World Poult Res 2021;11:36-46. https://doi.org/10.36380/jwpr.2021.6
  47. Murawska D, Daszkiewicz T, Sobotka W, et al. Partial and total replacement of soybean meal with full-fat black soldier fly (Hermetia illucens L.) larvae meal in broiler chicken diets: impact on growth performance, carcass quality and meat quality. Animals 2021;11:2715. https://doi.org/10.3390/ani11092715
  48. Xia J, Ge C, Yao H. Antimicrobial Peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. Animals (Basel) 2021;11:1937. https://doi.org/10.3390/ani11071937
  49. Bregendahl K, Sell JL, Zimmerman DR. Effect of low-protein diets on growth performance and body composition of broiler chicks. Poult Sci 2002;81:1156-67. https://doi.org/10.1093/ps/81.8.1156
  50. Shao D, Shen Y, Zhao X, et al. Low-protein diets with balanced amino acids reduce nitrogen excretion and foot pad dermatitis without affecting the growth performance and meat quality of free-range yellow broilers. Ital J Anim Sci 2018;17:698-705. https://doi.org/10.1080/1828051X.2017.1400414
  51. Collin A, Malheiros RD, Moraes VMB, et al. Effects of dietary macronutrient content on energy metabolism and uncoupling protein mRNA expression in broiler chickens. Br J Nutr 2003;90:261-9. https://doi.org/10.1079/bjn2003910
  52. Hernandez F, Lopez M, Martinez S, Megias MD, Catala P, Madrid J. Effect of low-protein diets and single sex on production performance, plasma metabolites, digestibility, and nitrogen excretion in 1- to 48-day-old broilers. Poult Sci 2012;91:683-92. https://doi.org/10.3382/ps.2011-01735
  53. Abd El-Wahab A, Hillert M, Spindler B, Hartung J, Surie C, Kamphues J. Effects of diets formulated on an all-plant protein basis or including animal protein on foot pad health and performance in fattening Turkeys. Eur Poult Sci 2014;78:1-11. https://doi.org/10.1399/eps.2014.38
  54. Alleman F, Leclercq B. Effect of dietary protein and environmental temperature on growth performance and water consumption of male broiler chickens. Br Poult Sci 1997;38:607-10. https://doi.org/10.1080/00071669708418044
  55. Van Harn J, Dijkslag MA, van Krimpen MM. Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poult Sci 2019;98:4868-77. https://doi.org/10.3382/ps/pez229