Acknowledgement
This research was supported by Internal Research Grant Universitas Padjadjaran (HIU RPLK UNPAD No. 3018/UN6.3.1/PT.00/2023) (to Rangga Setiawan).
References
- Bohnensack R, Halangk W. Control of respiration and of motility in ejaculated bull spermatozoa. Biochim Biophys Acta Bioenerg 1986;850:72-9. https://doi.org/10.1016/0005-2728(86)90010-1
- Turner RM. Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev 2005;18:25-38. https://doi.org/10.1071/RD05120
- Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod 2004;71:540-7. https://doi.org/10.1095/biolreprod.103.026054
- Ford WCL. Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round? Hum Reprod Update 2006;12:269-74. https://doi.org/10.1093/humupd/dmi053
- Davila MP, Munoz PM, Tapia JA, et al. Inhibition of mitochondrial complex I leads to decreased motility and membrane integrity related to increased hydrogen peroxide and reduced ATP production, while the inhibition of glycolysis has less impact on sperm motility. PLoS One 2015;10:e0138777. https://doi.org/10.1371/journal.pone.0138777
- Chaudhry R, Varacallo M. Biochemistry, glycolysis. Treasure Island, FL, USA: StatPearls; 2018.
- Melkonian EA, Schury MP. Biochemistry, anaerobic glycolysis. Treasure Island, FL, USA: StatPearls; 2019.
- Setiawan R, Priyadarshana C, Tajima A, Travis AJ, Asano A. Localisation and function of glucose transporter GLUT1 in chicken (Gallus gallus domesticus) spermatozoa: relationship between ATP production pathways and flagellar motility. Reprod Fertil Dev 2020;32:697-705. https://doi.org/10.1071/RD19240
- Setiawan R, Priyadarshana C, Miyazaki H, Tajima A, Asano A. Functional difference of ATP-generating pathways in rooster sperm (Gallus gallus domesticus). Anim Reprod Sci 2021;233:106843. https://doi.org/10.1016/j.anireprosci.2021.106843
- Brooks DE, Mann T. Pyruvate metabolism in boar spermatozoa. J Reprod Fertil 1973;34:105-19. https://doi.org/10.1530/jrf.0.0340105
- Darr CR, Varner DD, Teague S, et al. Lactate and pyruvate are major sources of energy for stallion sperm with dose effects on mitochondrial function, motility, and ROS production. Biol Reprod 2016;95:34. https://doi.org/10.1095/biolreprod.116.140707
- Elia J, Imbrogno N, Delfino M, Mazzilli R, Rossi T, Mazzilli F. The importance of the sperm motility classes-future directions. Open Androl J 2010;2:42-3.
- Wittek T, Erices J, Elze K. Histology of the endometrium, clinical-chemical parameters of the uterine fluid and blood plasma concentrations of progesterone, estradiol-17β and prolactin during hydrometra in goats. Small Rumin Res 1998;30:105-12. https://doi.org/10.1016/S0921-4488(98)00085-6
- Qiu JH, Li YW, Xie HL, et al. Effects of glucose metabolism pathways on sperm motility and oxidative status during long-term liquid storage of goat semen. Theriogenology 2016;86:839-49. https://doi.org/10.1016/j.theriogenology. 2016.03.005
- Mujica A, Moreno-Rodriguez R, Naciff J, Neri L, Tash JS. Glucose regulation of guinea-pig sperm motility. Reproduction 1991;92:75-87. https://doi.org/10.1530/jrf.0.0920075
- Ponglowhapan S, Essen-Gustavsson B, Forsberg CL. Influence of glucose and fructose in the extender during long-term storage of chilled canine semen. Theriogenology 2004;62:1498-517. https://doi.org/10.1016/j.theriogenology.2004.02.014
- Bucci D, Rodriguez-Gil JE, Vallorani C, Spinaci M, Galeati G, Tamanini C. GLUTs and mammalian sperm metabolism. J Androl 2011;32:348-55. https://doi.org/10.2164/jandrol.110.011197
- Bucci D, Isani G, Spinaci M, et al. Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa. Reprod Domest Anim 2010;45:315-22. https://doi.org/10.1111/j.1439-0531.2008.01307.x
- Halestrap AP, Meredith D. The SLC16 gene family - From monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch Eur J Physiol 2004;447:619-28. https://doi.org/10.1007/s00424-003-1067-2
- Tourmente M, Villar-Moya P, Rial E, Roldan ERS. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. J Biol Chem 2015;290:20613-26. https://doi.org/10.1074/jbc.M115.664813
- Tombes RM, Shapiro BM. Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell 1985;41:325-34. https://doi.org/10.1016/0092-8674(85)90085-6