DOI QR코드

DOI QR Code

miR-133a-3p and miR-145-5p co-promote goat hair follicle stem cell differentiation by regulating NANOG and SOX9 expression

  • Jian Wang (Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University) ;
  • Xi Wu (Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University) ;
  • Liuming Zhang (Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University) ;
  • Qiang Wang (Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University) ;
  • Xiaomei Sun (Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University) ;
  • Dejun Ji (Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University) ;
  • Yongjun Li (Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University)
  • Received : 2023.09.08
  • Accepted : 2023.10.20
  • Published : 2024.04.01

Abstract

Objective: Hair follicle stem cells (HFSCs) differentiation is a critical physiological progress in skin hair follicle (HF) formation. Goat HFSCs differentiation is one of the essential processes of superior-quality brush hair (SQBH) synthesis. However, knowledge regarding the functions and roles of miR-133a-3p and miR-145-5p in differentiated goat HFSCs is limited. Methods: To examine the significance of chi-miR-133a-3p and chi-miR-145-5p in differentiated HFSCs, overexpression and knockdown experiments of miR-133a-3p and miR-145-5p (Mimics and Inhibitors) separately or combined were performed. NANOG, SOX9, and stem cell differentiated markers (β-catenin, C-myc, Keratin 6 [KRT6]) expression levels were detected and analyzed by using real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence assays in differentiated goat HFSCs. Results: miR-133a-3p and miR-145-5p inhibit NANOG (a gene recognized in keeping and maintaining the totipotency of embryonic stem cells) expression and promote SOX9 (an important stem cell transcription factor) expression in differentiated stem cells. Functional studies showed that miR-133a-3p and miR-145-5p individually or together overexpression can facilitate goat HFSCs differentiation, whereas suppressing miR-133a-3p and miR-145-5p or both inhibiting can inhibit goat HFSCs differentiation. Conclusion: These findings could more completely explain the modulatory function of miR-133a-3p and miR-145-5p in goat HFSCs growth, which also provide more understandings for further investigating goat hair follicle development.

Keywords

Acknowledgement

The authors thank all individuals and institutions who participated in this work and are grateful for the support by grants from the National Science Foundation of China (32172690, 31572355) and the Youth Natural Science Foundation of Jiangsu Province (BK20230583), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, 2014-134), a Project Supported by the Open Project Program of International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement (IJRLD-KF202213), and funded by 2023 Jiangsu Outstanding Postdoctoral People Project (322340).

References

  1. Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol 2009;19: R132-42. https://doi.org/10.1016/j.cub.2008.12.005
  2. Calvo-Sanchez MI, Fernandez-Martos S, Carrasco E, et al. A role for the Tgf-β/Bmp co-receptor Endoglin in the molecular oscillator that regulates the hair follicle cycle. J Mol Cell Biol 2019;11:39-52. https://doi.org/10.1093/jmcb/mjy051
  3. Xiao P, Zhong T, Liu Z, et al. Integrated analysis of methylome and transcriptome changes reveals the underlying regulatory signatures driving curly wool transformation in Chinese Zhongwei goats. Front Genet 2020; 10:1263. https://doi.org/10.3389/fgene.2019.01263
  4. Hu XM, Li ZX, Zhang DY, et al. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther 2021;12:453. https://doi.org/10.1186/s13287-021-02527-y
  5. Pan G, Thomson JA. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 2007;17:42-9. https://doi.org/10.1038/sj.cr.7310125
  6. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003;113:643-55. https://doi.org/10.1016/s0092-8674(03)00392-1
  7. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-20. https://doi.org/10.1126/science.1151526
  8. Hart AH, Hartley L, Parker K, et al. The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer 2005;104:2092-8. https://doi.org/10.1002/cncr.21435
  9. Lu CP, Polak L, Rocha AS, et al. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 2012;150:136-50. https://doi.org/10.1016/j.cell.2012.04.045
  10. Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 2013;12:15-30. https://doi.org/10.1016/j.stem.2012.12.007
  11. Wang Q, Qu J, Li Y, et al. Hair follicle stem cells isolated from newborn Yangtze River Delta White goats. Gene 2019;698:19-26. https://doi.org/10.1016/j.gene.2019.02.052
  12. Guo H, Cheng G, Li Y, Zhang H, Qin K. A screen for key genes and pathways involved in high-quality brush hair in the Yangtze River Delta White goat. PLoS One 2017;12:e0169820. https://doi.org/10.1371/journal.pone.0169820
  13. Qiang W, Guo H, Li Y, Shi J, Yin X, Qu J. Methylation analysis of CMTM3 and DUSP1 gene promoters in high-quality brush hair in the Yangtze River delta white goat. Gene 2018;668:166-73. https://doi.org/10.1016/j.gene.2018.05.031
  14. Wang J, Wu X, Zhang L, et al. MiR-149-5p promotes β-catenin-induced goat hair follicle stem cell differentiation. In Vitro Cell Dev Biol Anim 2022;58:325-34. https://doi.org/10.1007/s11626-022-00667-w
  15. Shen Q, Yu W, Fang Y, Yao M, Yang P. Beta-catenin can induce hair follicle stem cell differentiation into transit-amplifying cells through c-myc activation. Tissue Cell 2017;49:28-34. https://doi.org/10.1016/j.tice.2016.12.005
  16. Nanba D, Toki F, Barrandon Y, Higashiyama S. Recent advances in the epidermal growth factor receptor/ligand system biology on skin homeostasis and keratinocyte stem cell regulation. J Dermatol Sci 2013;72:81-6. https://doi.org/10.1016/j.jdermsci.2013.05.009
  17. Du KT, Deng JQ, He XG, Liu ZP, Peng C, Zhang MS. MiR-214 regulates the human hair follicle stem cell proliferation and differentiation by targeting EZH2 and Wnt/β-catenin signaling way in vitro. Tissue Eng Regen Med 2018;15:341-50. https://doi.org/10.1007/s13770-018-0118-x
  18. Zhao B, Chen Y, Yang N, et al. miR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2. J Cell Physiol 2019;234:20329-41. https://doi.org/10.1002/jcp.28633
  19. Cai B, Zheng Y, Ma S, et al. Long non-coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway. Mol Med Rep 2018;17:5477-83. https://doi.org/10.3892/mmr.2018.8546
  20. Si Y, Bai J, Wu J, et al. LncRNA PlncRNA-1 regulates proliferation and differentiation of hair follicle stem cells through TGF-β1-mediated Wnt/β-catenin signal pathway. Mol Med Rep 2018;17:1191-7. https://doi.org/10.3892/mmr.2017.7944
  21. Zhao J, Shen J, Wang Z, et al. CircRNA-0100 positively regulates the differentiation of cashmere goat SHF-SCs into hair follicle lineage via sequestering miR-153-3p to heighten the KLF5 expression. Arch Anim Breed 2022;65:55-67. https://doi.org/10.5194/aab-65-55-2022
  22. Yin RH, Zhao SJ, Jiao Q, et al. CircRNA-1926 promotes the differentiation of goat shf stem cells into hair follicle lineage by miR-148a/b-3p/CDK19 axis. Animals (Basel) 2020;10:1552. https://doi.org/10.3390/ani10091552
  23. Wang J, Qu J, Li Y, et al. miR-149-5p regulates goat hair follicle stem cell proliferation and apoptosis by targeting the CMTM3/AR axis during superior-quality brush hair formation. Front Genet 2020;11:529757. https://doi.org/10.3389/fgene.2020.529757
  24. Wang J, Wu X, Sun X, et al. The circular RNA CircCOL1A1 functions as a miR-149-5p sponge to regulate the formation of superior-quality brush hair via the CMTM3/AR axis. Front Cell Dev Biol 2022;10:760466. https://doi.org/10.3389/fcell. 2022.760466
  25. Wu X, Wang J, Kang Y, et al. miR-133a-3p regulates the growth of hair follicle stem cells in white goats from the Yangtze River delta. Anim Biotechnol 2023 Feb 8 [Epub]. https://doi.org/10.1080/10495398.2023.2172422
  26. Wu X, Wang J, Kang Y, et al. Regulation of proliferation and apoptosis of hair follicle stem cells by miR-145-5p in Yangtze River Delta White goats. Genes (Basel) 2022;13:1973. https://doi.org/10.3390/genes13111973
  27. Adnan M, Morton G, Hadi S. Analysis of rpoS and bolA gene expression under various stress-induced environments in planktonic and biofilm phase using 2(-ΔΔCT) method. Mol Cell Biochem 2011; 357:275-82. https://doi.org/10.1007/s11010-011-0898-y
  28. Arocho A, Chen B, Ladanyi M, Pan Q. Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn Mol Pathol 2006;15:56-61. https://doi.org/10.1097/00019606-200603000-00009
  29. Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 2008;3:33-43. https://doi.org/10.1016/j.stem.2008.05.009
  30. Amoh Y, Li L, Katsuoka K, Hoffman RM. Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle 2008;7:1865-9. https://doi.org/10.4161/cc.7.12.6056
  31. Wu N, Gu T, Lu L, et al. Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle. J Cell Physiol 2019;234:3490-9. https://doi.org/10.1002/jcp.26857
  32. Ji S, Shi Y, Yang L, Zhang F, Li Y, Xu F. miR-145-5p inhibits neuroendocrine differentiation and tumor growth by regulating the SOX11/MYCN axis in prostate cancer. Front Genet 2022;13:790621. https://doi.org/10.3389/fgene.2022.790621
  33. Liu F, Zhang X, Peng Y, et al. miR-24 controls the regenerative competence of hair follicle progenitors by targeting Plk3. Cell Rep 2021;35:109225. https://doi.org/10.1016/j.celrep.2021.109225
  34. He J, Huang X, Zhao B, et al. Integrated analysis of miRNAs and mRNA profiling reveals the potential roles of miRNAs in sheep hair follicle development. BMC Genomics 2022;23:722. https://doi.org/10.1186/s12864-022-08954-2
  35. Pan G, Li J, Zhou Y, Zheng H, Pei D. A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. FASEB J 2006;20:1730-2. https://doi.org/10.1096/fj.05-5543fje
  36. Pereira L, Yi F, Merrill BJ. Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Mol Cell Biol 2006;26:7479-91. https://doi.org/10.1128/MCB.00368-06
  37. He N, Dong Z, Tai D, et al. The role of Sox9 in maintaining the characteristics and pluripotency of Arbas Cashmere goat hair follicle stem cells. Cytotechnology 2018;70:1155-65. https://doi.org/10.1007/s10616-018-0206-8