Acknowledgement
This work was supported by the National Natural Science Foundation of China (32372825) and the Fundamental Research Funds for the Central Universities (KYZ201724).
References
- Ramakrishna NB, Murison K, Miska EA, Leitch HG. Epigenetic regulation during primordial germ cell development and differentiation. Sex Dev 2021;15:411-31. https://doi.org/10.1159/000520412
- Hancock GV, Wamaitha SE, Peretz L, Clark AT. Mammalian primordial germ cell specification. Development 2021;148:dev189217. https://doi.org/10.1242/dev.189217
- Wang XX, Ma X, Wei GB, et al. The role of DNA methylation reprogramming during sex determination and transition in zebrafish. Genomics Proteomics Bioinformatics 2021;19:48-63. https://doi.org/10.1016/j.gpb.2020.10.004
- Wang X, Bhandari RK. The dynamics of DNA methylation during epigenetic reprogramming of primordial germ cells in medaka (Oryzias latipes). Epigenetics 2020;15:483-98. https://doi.org/10.1080/15592294.2019.1695341
- Yu ML, Li DF, Cao WY, Chen XL, Du WX. Effects of ten-eleven translocation 1 (Tet1) on DNA methylation and gene expression in chicken primordial germ cells. Reprod Fertil Dev 2019;31:509-20. https://doi.org/10.1071/RD18145
- Gallego-Bartolome J, Gardiner J, Liu WL, Jacobsen SE. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Natl Acad Sci USA 2018;115:E2125-34. https://doi.org/10.1073/pnas.1716945115
- Zuo QS, Gong W, Yao ZL, Xia Q, Zhang YN, Li BC. Identification of key events and regulatory networks in the formation process of primordial germ cell based on proteomics. J Cell Physiol 2023;238:610-30. https://doi.org/10.1002/jcp.30952
- Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013;502:472-9. https://doi.org/10.1038/nature12750
- Khoueiry R, Sohni A, Thienpont B, et al. Lineage-specific functions of TET1 in the postimplantation mouse embryo. Nat Genet 2017;49:1061-72. https://doi.org/10.1038/ng.3868
- Gavin DP, Chase KA, Sharma RP. Active DNA demethylation in post-mitotic neurons: a reason for optimism. Neuropharmacology 2013;75:233-45. https://doi.org/10.1016/j.neuropharm.2013.07.036
- Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010;466:1129-33. https://doi.org/10.1038/nature09303
- Miyoshi N, Stel JM, Shioda K, Shioda T. Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells. Proc Natl Acad Sci USA 2016;113:9545-50. https://doi.org/10.1073/pnas.1610259113
- Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M. A signaling principle for the specification of the germ cell lineage in mice. Cell 2009;137:571-84. https://doi.org/10.1016/j.cell.2009.03.014
- Kai M, Niinuma T, Kitajima H, et al. TET1 depletion induces aberrant CpG methylation in colorectal cancer cells. PLoS One 2016;11:e0168281. https://doi.org/10.1371/journal.pone.0168281
- Jiang X, Tan J, Li JS, et al. DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell 2008;13:529-41. https://doi.org/10.1016/j.ccr.2008.04.019
- Waaler J, Machon O, von Kries JP, et al. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth. Cancer Res 2011;71:197-205. https://doi.org/10.1158/0008-5472.CAN-10-1282
- Zhang B, Li N, Zhang H. Knockdown of Homeobox B5 (HOXB5) inhibits cell proliferation, migration, and invasion in non-small cell lung cancer cells through inactivation of the Wnt/beta-catenin pathway. Oncol Res 2018;26:37-44. https://doi.org/10.3727/096504017X14900530835262
- Zhang C, Zuo QS, Gao XM, et al. H3K4me2 promotes the activation of lncCPSET1 by Jun in the chicken PGC formation. Animals (Basel) 2021;11:1572. https://doi.org/10.3390/ani11061572
- D'Orazio FM, Balwierz PJ, Gonzalez AJ, et al. Germ cell differentiation requires Tdrd7-dependent chromatin and transcriptome reprogramming marked by germ plasm relocalization. Dev Cell 2021;56:641-56. https://doi.org/10.1016/j.devcel.2021.02.007
- Kress C, Montillet G, Jean C, Fuet A, Pain B. Chicken embryonic stem cells and primordial germ cells display different heterochromatic histone marks than their mammalian counterparts. Epigenetics Chromatin 2016;9:5. https://doi.org/10.1186/s13072-016-0056-6
- Mallol A, Guirola M, Payer B. PRDM14 controls X-chromosomal and global epigenetic reprogramming of H3K27me3 in migrating mouse primordial germ cells. Epigenetics Chromatin 2019;12:38. https://doi.org/10.1186/s13072-019-0284-7
- Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 2010;329:78-82. https://doi.org/10.1126/science.1187945
- Yu ML, Ge CT, Zeng WD, Mi YL, Zhang CQ. Retinoic acid promotes proliferation of chicken primordial germ cells via activation of PI3K/Akt-mediated NF-kappaB signalling cascade. Cell Biol Int 2012;36:705-12. https://doi.org/10.1042/CBI20110542
- Yamaguchi S, Shen L, Liu YT, Sendler D, Zhang Y. Role of Tet1 in erasure of genomic imprinting. Nature 2013;504:460-4. https://doi.org/10.1038/nature12805
- Matsui Y, Mochizuki K. A current view of the epigenome in mouse primordial germ cells. Mol Reprod Dev 2014;81:160-70. https://doi.org/10.1002/mrd.22214
- Tahiliani M, Koh KP, Shen YH, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930-5. https://doi.org/10.1126/science.1170116
- Lian CG, Xu YF, Ceol C, et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 2012; 150:1135-46. https://doi.org/10.1016/j.cell.2012.07.033
- Hackett JA, Dietmann S, Murakami K, Down TA, Leitch HG, Surani MA. Synergistic mechanisms of DNA demethylation during transition to ground-state pluripotency. Stem Cell Rep 2013;1:518-31. https://doi.org/10.1016/j.stemcr.2013.11.010
- Piccolo FM, Bagci H, Brown KE, et al. Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion. Mol Cell 2013;49:1176. https://doi.org/10.1016/j.molcel.2013.03.011
- Guibert S, Forne T, Weber, M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res 2012;22:633-41. https://doi.org/10.1101/gr.130997.111
- Lee HC, Lim S, Han, JY. Wnt/β-catenin signaling pathway activation is required for proliferation of chicken primordial germ cells in vitro. Sci Rep 2016;6:34510. https://doi.org/10.1038/srep34510
- Zhang RR, Cui QY, Murai K, et al. Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 2013; 13:237-45. https://doi.org/10.1016/j.stem.2013.05.006
- Dai HQ, Wang BA, Yang L, et al. TET-mediated DNA demethylation controls gastrulation by regulating Lefty-Nodal signalling. Nature 2016;538:528-32. https://doi.org/10.1038/nature20095
- Jin K, Chen H, Zuo QS, et al. CREPT and p15RS regulate cell proliferation and cycling in chicken DF-1 cells through the Wnt/beta-catenin pathway. J Cell Biochem 2018;119:1083-92. https://doi.org/10.1002/jcb.26277
- Zhang L, Cheng HL, Yue YX, Li SZ, Zhang DP, He RL. H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/beta-catenin in ox-LDL-stimulated vascular smooth muscle cells. J Biomed Sci 2018;25:11. https://doi.org/10.1186/s12929-018-0418-4