과제정보
본 연구는 한국산업기술평가관리원의 전략핵심소재자립화기술개발사업(산업폐수 처리용 석유계 잔사유 기반 다공성 흡착소재 개발: 20012763)의 지원에 의하여 수행하였으며 이에 감사드립니다.
참고문헌
- G. Jeong, B. Son, C. Ahn, S. Lee, J. Ahn, B. Kim, and D. Chung, Study on removal of cesium in water treatment system, J. Korean Soc. Environ. Eng., 38, 8-13 (2016). https://doi.org/10.4491/KSEE.2016.38.1.8
- S. Q. Chen, J. Y. Hu, S. J. Han, Y. F. Guo, N. Belzile, and T. L. Deng, A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade, Sep. Purif. Technol., 251, 117340 (2020).
- J. Wu, B. Li, J. Liao, Y. Feng, D. Zhang, J. Zhao, W. Wen, Y. Yang, and N. Liu, Behavior and analysis of Cesium adsorption on montmorillonite mineral, J. Environ. Radioact., 100, 914-920 (2009). https://doi.org/10.1016/j.jenvrad.2009.06.024
- H. Mukai, A. Hirose, S. Motai, R. Kikuchi, K. Tanoi, T. M. Nakanishi, T. Yaita, and T. Kogure, Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima, Sci. Rep., 6, 21543 (2016).
- R. Yavari, Y. D. Huang, and S. J. Ahmadi, Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes, J. Radioanal. Nucl. Chem., 287, 393-401 (2011). https://doi.org/10.1007/s10967-010-0909-6
- J. Ahn and M. Lee, Sorption efficiency of the bamboo charcoal to remove the cesium in the contaminated water system, Econ. Environ. Geol., 51, 87-97 (2018).
- S. Ha, C. H. Kwak, C. Lim, S. Kim, and Y. S. Lee, Cesium ions adsorption of activated carbon treated by oxygen plasma, Appl. Chem. Eng., 33, 38-43 (2022).
- J. G. Kim, M. Kim, R. Malsawmdawngzela, C. S. An, and S. M. Lee, Adsorption removal of cesium from aqueous solution using activated bentonite, KSWST J. Water Treat., 27, 77-87 (2019). https://doi.org/10.17640/KSWST.2019.27.2.77
- C. H. Kwak, C. Lim, S. Kim, and Y. S. Lee, Surface modification of carbon materials and its application as adsorbents, J. Ind. Eng. Chem., 116, 21-31 (2022). https://doi.org/10.1016/j.jiec.2022.08.043
- S. G. Jeong, S. Ha, and Y. S. Lee, Manufacturing and application of activated carbon and carbon molecular sieves in gas adsorption and separation processes, Appl. Chem. Eng., 33, 488-495 (2022).
- S. J. Park and B. J. Kim, Influence of ozone treatment on Cr(VI) adsorption of activated carbon, Korean Chem. Eng. Res., 44, 644-649 (2006).
- Q. Zhang, X. C. Ma, C. He, Q. L. Chen, and B. J. Zhang, Experiment and molecular simulation for liquid phase adsorption of triethylenetetramine on activated carbon: Equilibrium, kinetics, thermodynamics and molecular behavior, Carbon Lett., 33, 1977-1991 (2023). https://doi.org/10.1007/s42823-023-00589-x
- X. Lin, W. Zeng, Y. Chen, T. Su, Q. Zhong, L. Gong, and Y Liu, UiO-66-derived porous-carbon adsorbents: Synthesis, characterization and tetracycline adsorption performance, Carbon Lett., 32, 875-884 (2022). https://doi.org/10.1007/s42823-022-00325-x
- X. M. Vu, T. M. H. Le, V. C. Bui, T. D. Nguyen, D. D. Hrynshpan, V. T. Le, D. L. Tran, T. P. L. Nguyen, and T. L. Pham, A promising composite adsorbent of activated carbon and natural alginate for Cu(II) ion removal from aqueous solutions, Carbon Lett., Doi:10.1007/s42823-023-00598-w.
- S. H. Kim, M. J. Kim, E. J. Song, and Y. S. Lee, Effects of oxygen functional groups introduced onto activated carbon fibers on gas sensing property of chemical warfare agent, Appl. Chem. Eng., 30, 719-725 (2019).
- C. Lim, S. G. Jeong, S. Ha, N. Ha, S. Myeong, and Y. S. Lee, Unique CO2 adsorption of pine needle biochar-based activated carbons by induction of functionality transition, J. Ind. Eng. Chem., 124, 201-210 (2023). https://doi.org/10.1016/j.jiec.2023.04.008
- S. Kim, C. Lim, C. H. Kwak, D. Kim, S. Ha, and Y. S. Lee, Hydrophobic melamine sponge prepared by direct fluorination for efficient separation of emulsions, J. Ind. Eng. Chem., 118, 259-267 (2023). https://doi.org/10.1016/j.jiec.2022.11.011
- R. Lee, C. Lim, H. Lee, S. Kim, and Y. S. Lee, Visible light photocatalytic activity of TiO2 with carbon-fluorine heteroatoms simultaneously introduced by CF4 plasma, Korean J. Chem. Eng., 39, 3334-3342 (2022). https://doi.org/10.1007/s11814-022-1128-x
- C. Lim, H. R. An, S. Ha, S. Myeong, C. G. Min, H. J. Chung, B. Son, C. Y. Kim, J. I. Park, H. Kim, H. U. Lee, and Y. S. Lee, Highly visible-light-responsive nanoporous nitrogen-doped TiO2 (N-TiO2) photocatalysts produced by underwater plasma technology for environmental and biomedical applications, Appl. Surf. Sci., 638, 158123 (2023).
- S. Myeong, C. Lim, S. Kim, and Y. S. Lee, High-efficiency oil/water separation of hydrophobic stainless steel mesh filter through carbon and fluorine surface treatment, Korean J. Chem. Eng., 40, 1418-1424 (2023). https://doi.org/10.1007/s11814-022-1330-x
- C. Lim, C. H. Kwak, S. G. Jeong, D. Kim, and Y. S. Lee, Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment, Carbon Lett., 33, 139-145 (2023). https://doi.org/10.1007/s42823-022-00410-1
- S. Ha, S. G. Jeong, S. Myeong, C. Lim, and Y. S. Lee, High-performance CO2 adsorption of jellyfish-based activated carbon with many micropores and various heteroatoms, J. CO2 Util., 76, 102589 (2023).
- C. Lim, S. Ha, S. Myeong, N. Ha, C. G. Min, and Y. S. Lee, Production of needle cokes via mild condition co-pyrolysis of FCC-DO and PFPE, Fuel, 360, 130622 (2024).
- S. Ha, C. Lim, C. G. Min, S. Myeong, N. Ha, and Y. S. Lee, Improved energy and power density of a Li/CFX primary battery through control of the C-F bonds with thermobaric modifications, J. Ind. Eng. Chem., Doi.10.1016/j.jiec.2023.12.029.
- S. Khandaker, T. Kuba, S. Kamida, and Y. Uchikawa, Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal, Appl. Surf. Sci., 590, 153101 (2022).
- R. Yavari, Y. D. Huang, and S. J. Ahmadi, Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes, J. Radioanal. Nucl. Chem., 287, 393-401 (2011). https://doi.org/10.1007/s10967-010-0909-6
- J. H. Kim, S. Kim, G. B Lee, H. Kim, and B. U. Hong, Characterization of gas production and development of specific surface areas during the chemical activation on activated carbons treated with ozone, J. Energy Clim. Chang., 14, 113-124 (2019).
- J. Jaramillo, P. M. Alvarez, and V. Gomez-Serrano, Preparation and ozone-surface modification of activated carbon. Thermal stability of oxygen surface groups, Appl. Surf. Sci., 256, 5232-5236 (2010). https://doi.org/10.1016/j.apsusc.2009.12.109
- J. Rivera-Utrilla, M. Sanchez-Polo, V. Gomez-Serrano, P. M. Alvarez, M. C. M. Alvim-Ferraz, and J. M. Dias, Activated carbon modifications to enhance its water treatment applications. An overview, J. Hazard. Mater., 187, 1-23 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.033
- H. L. Chiang, C. P. Huang, and P. C. Chiang, The surface characteristics of activated carbon as affected by ozone and alkaline treatment, Chemosphere, 47, 257-265 (2023). https://doi.org/10.1016/S0045-6535(01)00215-6
- H. Valdes and C. A. Zaror, Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties, J. Hazard. Mater., 137, 1042-1048 (2006). https://doi.org/10.1016/j.jhazmat.2006.03.025
- J. H. Jang, G. B. Han, and H. Kim, Effect of pre-treatment by ozone on chemical surface modification of activated carbon fiber, J. Korean Soc. Environ. Eng., 35, 415-421 (2013). https://doi.org/10.4491/KSEE.2013.35.6.415
- C. Y. Yin, M. K. Aroua, and W. M. A.W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol., 52, 403-415 (2007). https://doi.org/10.1016/j.seppur.2006.06.009
- H. Valdes, M. Sanchez-Polo, J. Rivera-Utrilla, and C. A. Zaror, Effect of ozone treatment on surface properties of activated carbon, Langmuir, 18, 2111-2116 (2002). https://doi.org/10.1021/la010920a
- G. Lota, P. Krawczyk, K. Lota, A. Sierczynska, L. Kolanowski, M. Baraniak, and T. Buchwald, The application of activated carbon modified by ozone treatment for energy storage, J. Solid State Electrochem., 20, 2857-2864 (2016). https://doi.org/10.1007/s10008-016-3293-5
- M. Sanchez-Polo, U. von Gunten, and J. Rivera-Utrilla, Efficiency of activated carbon to transform ozone into radical dotOH radicals: Influence of operational parameters, Water Res., 39, 3189-3198 (2005). https://doi.org/10.1016/j.watres.2005.05.026
- C. Lim, H. An, H. Lee, R. Lee, Y. Choi, J. I. Park, J. Yoon, H. U. Lee, and Y. S. Lee, Carbon-titanium dioxide heterogeneous (photo)catalysts (C-TiO2) for highly efficient visible light photocatalytic application, Compos. B Eng., 241, 109997 (2022).
- H. Long, P. Wu, and N. Zhu, Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite, Chem. Eng. J., 225, 237-244 (2013). https://doi.org/10.1016/j.cej.2013.03.088