DOI QR코드

DOI QR Code

오존 처리에 의해 산소 작용기가 도입된 활성탄소의 세슘 흡착 특성

Cesium Adsorption Properties of Activated Carbon with Oxygen Functional Groups Introduced by Ozonation Treatment

  • 채은선 (충남대학교 응용화학공학과) ;
  • 민충기 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Eunseon Chae (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chung Gi Min (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chaehun Lim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Young-Seak Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2023.12.01
  • 심사 : 2024.01.03
  • 발행 : 2024.02.10

초록

세슘은 높은 수용성으로 인하여 인체에 쉽게 침투하여 암 또는 DNA의 변형을 유발하는 잠재적인 독성 오염물질이다. 본 연구에서는 활성탄소의 세슘 흡착 능력을 향상시키고자 오존 처리를 통하여 활성탄소 표면에 산소 작용기를 도입하였다. 오존 처리 시간의 증가에 따라 활성탄소 표면의 산소함량이 증가하였다. 이후 활성탄소와 세슘 사이의 정전기적 상호작용이 더욱 원활하게 이루어져 모든 시료의 세슘 이온 흡착 효율이 향상되었다. 특히 반응기 내부 오존 농도를 50000 ppm으로 하여 7 min 동안 오존 처리한 시료는 약 12%의 높은 산소 작용기 함량을 보이며 97.6%의 가장 높은 세슘 제거 효율을 보였다. 한편, 5 min 동안 처리된 시료는 7 min간 반응한 시료와 비교하여 0.3%의 근소한 세슘 제거율 차이를 보였으며, 이는 오존 기체의 반응 특성으로 인한 두 시료의 표면화학적 유사성에 기인한다. 그러나, 오존 처리된 활성탄소의 세슘 흡착 성능은 활성탄소의 비표면적 및 기공 구조도 중요하지만 표면에 도입된 산소 작용기 양이 주된 영향을 미치는 것으로 판단된다.

Cesium is a potential toxic contaminant due to its high solubility, which allows it to easily penetrate the human body and potentially induce cancer or DNA mutations. In this study, oxygen functional groups were introduced on activated carbons (ACs) by ozone treatment to enhance the cesium adsorption capacity. As the ozone treatment time increased, the oxygen content on the ACs surface increased. Subsequently, the electrostatic interaction between ACs and cesium enhanced, resulting in higher cesium ion adsorption efficiency across all samples. In particular, the sample treated with ozone for 7 minutes at an internal ozone concentration of 50000 ppm had roughly 12% greater oxygen functional group content and the highest cesium removal effectiveness (97.6%). Meanwhile, samples treated for 5 minutes showed a 0.3% cesium removal rate difference compared to those treated for 7 minutes, which was caused by the surface chemical similarity of the two samples due to the reactive characteristics of ozone gas. However, the cesium adsorption performance of ozonated activated carbon seems to be mainly influenced by the amount of oxygen functional groups introduced to the surface, although the specific surface area and pore structure of the activated carbon are also important.

키워드

과제정보

본 연구는 한국산업기술평가관리원의 전략핵심소재자립화기술개발사업(산업폐수 처리용 석유계 잔사유 기반 다공성 흡착소재 개발: 20012763)의 지원에 의하여 수행하였으며 이에 감사드립니다.

참고문헌

  1. G. Jeong, B. Son, C. Ahn, S. Lee, J. Ahn, B. Kim, and D. Chung, Study on removal of cesium in water treatment system, J. Korean Soc. Environ. Eng., 38, 8-13 (2016). https://doi.org/10.4491/KSEE.2016.38.1.8
  2. S. Q. Chen, J. Y. Hu, S. J. Han, Y. F. Guo, N. Belzile, and T. L. Deng, A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade, Sep. Purif. Technol., 251, 117340 (2020).
  3. J. Wu, B. Li, J. Liao, Y. Feng, D. Zhang, J. Zhao, W. Wen, Y. Yang, and N. Liu, Behavior and analysis of Cesium adsorption on montmorillonite mineral, J. Environ. Radioact., 100, 914-920 (2009). https://doi.org/10.1016/j.jenvrad.2009.06.024
  4. H. Mukai, A. Hirose, S. Motai, R. Kikuchi, K. Tanoi, T. M. Nakanishi, T. Yaita, and T. Kogure, Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima, Sci. Rep., 6, 21543 (2016).
  5. R. Yavari, Y. D. Huang, and S. J. Ahmadi, Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes, J. Radioanal. Nucl. Chem., 287, 393-401 (2011). https://doi.org/10.1007/s10967-010-0909-6
  6. J. Ahn and M. Lee, Sorption efficiency of the bamboo charcoal to remove the cesium in the contaminated water system, Econ. Environ. Geol., 51, 87-97 (2018).
  7. S. Ha, C. H. Kwak, C. Lim, S. Kim, and Y. S. Lee, Cesium ions adsorption of activated carbon treated by oxygen plasma, Appl. Chem. Eng., 33, 38-43 (2022).
  8. J. G. Kim, M. Kim, R. Malsawmdawngzela, C. S. An, and S. M. Lee, Adsorption removal of cesium from aqueous solution using activated bentonite, KSWST J. Water Treat., 27, 77-87 (2019). https://doi.org/10.17640/KSWST.2019.27.2.77
  9. C. H. Kwak, C. Lim, S. Kim, and Y. S. Lee, Surface modification of carbon materials and its application as adsorbents, J. Ind. Eng. Chem., 116, 21-31 (2022). https://doi.org/10.1016/j.jiec.2022.08.043
  10. S. G. Jeong, S. Ha, and Y. S. Lee, Manufacturing and application of activated carbon and carbon molecular sieves in gas adsorption and separation processes, Appl. Chem. Eng., 33, 488-495 (2022).
  11. S. J. Park and B. J. Kim, Influence of ozone treatment on Cr(VI) adsorption of activated carbon, Korean Chem. Eng. Res., 44, 644-649 (2006).
  12. Q. Zhang, X. C. Ma, C. He, Q. L. Chen, and B. J. Zhang, Experiment and molecular simulation for liquid phase adsorption of triethylenetetramine on activated carbon: Equilibrium, kinetics, thermodynamics and molecular behavior, Carbon Lett., 33, 1977-1991 (2023). https://doi.org/10.1007/s42823-023-00589-x
  13. X. Lin, W. Zeng, Y. Chen, T. Su, Q. Zhong, L. Gong, and Y Liu, UiO-66-derived porous-carbon adsorbents: Synthesis, characterization and tetracycline adsorption performance, Carbon Lett., 32, 875-884 (2022). https://doi.org/10.1007/s42823-022-00325-x
  14. X. M. Vu, T. M. H. Le, V. C. Bui, T. D. Nguyen, D. D. Hrynshpan, V. T. Le, D. L. Tran, T. P. L. Nguyen, and T. L. Pham, A promising composite adsorbent of activated carbon and natural alginate for Cu(II) ion removal from aqueous solutions, Carbon Lett., Doi:10.1007/s42823-023-00598-w.
  15. S. H. Kim, M. J. Kim, E. J. Song, and Y. S. Lee, Effects of oxygen functional groups introduced onto activated carbon fibers on gas sensing property of chemical warfare agent, Appl. Chem. Eng., 30, 719-725 (2019).
  16. C. Lim, S. G. Jeong, S. Ha, N. Ha, S. Myeong, and Y. S. Lee, Unique CO2 adsorption of pine needle biochar-based activated carbons by induction of functionality transition, J. Ind. Eng. Chem., 124, 201-210 (2023). https://doi.org/10.1016/j.jiec.2023.04.008
  17. S. Kim, C. Lim, C. H. Kwak, D. Kim, S. Ha, and Y. S. Lee, Hydrophobic melamine sponge prepared by direct fluorination for efficient separation of emulsions, J. Ind. Eng. Chem., 118, 259-267 (2023). https://doi.org/10.1016/j.jiec.2022.11.011
  18. R. Lee, C. Lim, H. Lee, S. Kim, and Y. S. Lee, Visible light photocatalytic activity of TiO2 with carbon-fluorine heteroatoms simultaneously introduced by CF4 plasma, Korean J. Chem. Eng., 39, 3334-3342 (2022). https://doi.org/10.1007/s11814-022-1128-x
  19. C. Lim, H. R. An, S. Ha, S. Myeong, C. G. Min, H. J. Chung, B. Son, C. Y. Kim, J. I. Park, H. Kim, H. U. Lee, and Y. S. Lee, Highly visible-light-responsive nanoporous nitrogen-doped TiO2 (N-TiO2) photocatalysts produced by underwater plasma technology for environmental and biomedical applications, Appl. Surf. Sci., 638, 158123 (2023).
  20. S. Myeong, C. Lim, S. Kim, and Y. S. Lee, High-efficiency oil/water separation of hydrophobic stainless steel mesh filter through carbon and fluorine surface treatment, Korean J. Chem. Eng., 40, 1418-1424 (2023). https://doi.org/10.1007/s11814-022-1330-x
  21. C. Lim, C. H. Kwak, S. G. Jeong, D. Kim, and Y. S. Lee, Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment, Carbon Lett., 33, 139-145 (2023). https://doi.org/10.1007/s42823-022-00410-1
  22. S. Ha, S. G. Jeong, S. Myeong, C. Lim, and Y. S. Lee, High-performance CO2 adsorption of jellyfish-based activated carbon with many micropores and various heteroatoms, J. CO2 Util., 76, 102589 (2023).
  23. C. Lim, S. Ha, S. Myeong, N. Ha, C. G. Min, and Y. S. Lee, Production of needle cokes via mild condition co-pyrolysis of FCC-DO and PFPE, Fuel, 360, 130622 (2024).
  24. S. Ha, C. Lim, C. G. Min, S. Myeong, N. Ha, and Y. S. Lee, Improved energy and power density of a Li/CFX primary battery through control of the C-F bonds with thermobaric modifications, J. Ind. Eng. Chem., Doi.10.1016/j.jiec.2023.12.029.
  25. S. Khandaker, T. Kuba, S. Kamida, and Y. Uchikawa, Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal, Appl. Surf. Sci., 590, 153101 (2022).
  26. R. Yavari, Y. D. Huang, and S. J. Ahmadi, Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes, J. Radioanal. Nucl. Chem., 287, 393-401 (2011). https://doi.org/10.1007/s10967-010-0909-6
  27. J. H. Kim, S. Kim, G. B Lee, H. Kim, and B. U. Hong, Characterization of gas production and development of specific surface areas during the chemical activation on activated carbons treated with ozone, J. Energy Clim. Chang., 14, 113-124 (2019).
  28. J. Jaramillo, P. M. Alvarez, and V. Gomez-Serrano, Preparation and ozone-surface modification of activated carbon. Thermal stability of oxygen surface groups, Appl. Surf. Sci., 256, 5232-5236 (2010). https://doi.org/10.1016/j.apsusc.2009.12.109
  29. J. Rivera-Utrilla, M. Sanchez-Polo, V. Gomez-Serrano, P. M. Alvarez, M. C. M. Alvim-Ferraz, and J. M. Dias, Activated carbon modifications to enhance its water treatment applications. An overview, J. Hazard. Mater., 187, 1-23 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.033
  30. H. L. Chiang, C. P. Huang, and P. C. Chiang, The surface characteristics of activated carbon as affected by ozone and alkaline treatment, Chemosphere, 47, 257-265 (2023). https://doi.org/10.1016/S0045-6535(01)00215-6
  31. H. Valdes and C. A. Zaror, Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties, J. Hazard. Mater., 137, 1042-1048 (2006). https://doi.org/10.1016/j.jhazmat.2006.03.025
  32. J. H. Jang, G. B. Han, and H. Kim, Effect of pre-treatment by ozone on chemical surface modification of activated carbon fiber, J. Korean Soc. Environ. Eng., 35, 415-421 (2013). https://doi.org/10.4491/KSEE.2013.35.6.415
  33. C. Y. Yin, M. K. Aroua, and W. M. A.W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol., 52, 403-415 (2007). https://doi.org/10.1016/j.seppur.2006.06.009
  34. H. Valdes, M. Sanchez-Polo, J. Rivera-Utrilla, and C. A. Zaror, Effect of ozone treatment on surface properties of activated carbon, Langmuir, 18, 2111-2116 (2002). https://doi.org/10.1021/la010920a
  35. G. Lota, P. Krawczyk, K. Lota, A. Sierczynska, L. Kolanowski, M. Baraniak, and T. Buchwald, The application of activated carbon modified by ozone treatment for energy storage, J. Solid State Electrochem., 20, 2857-2864 (2016). https://doi.org/10.1007/s10008-016-3293-5
  36. M. Sanchez-Polo, U. von Gunten, and J. Rivera-Utrilla, Efficiency of activated carbon to transform ozone into radical dotOH radicals: Influence of operational parameters, Water Res., 39, 3189-3198 (2005). https://doi.org/10.1016/j.watres.2005.05.026
  37. C. Lim, H. An, H. Lee, R. Lee, Y. Choi, J. I. Park, J. Yoon, H. U. Lee, and Y. S. Lee, Carbon-titanium dioxide heterogeneous (photo)catalysts (C-TiO2) for highly efficient visible light photocatalytic application, Compos. B Eng., 241, 109997 (2022).
  38. H. Long, P. Wu, and N. Zhu, Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite, Chem. Eng. J., 225, 237-244 (2013). https://doi.org/10.1016/j.cej.2013.03.088