Acknowledgement
이 논문은 2023년 울산대학교 연구비에 의하여 연구되었음.
References
- S. Mekhilef, R. Saidur, and A. Safari, Comparative study of different fuel cell technologies, Renew. Sust. Energ. Rev., 16, 981-989 (2012). https://doi.org/10.1016/j.rser.2011.09.020
- A. O. Odeh, P. Osifo, and H. Noemagus, Chitosan: A low cost material for the production of membrane for use in PEMFC-A review, Energ. Source. Part A, 35, 152-163
- O. Z. Sharaf and M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renew. Sust. Energ. Rev, 32, 810-853 (2014). https://doi.org/10.1016/j.rser.2014.01.012
- E. Jannelli, M. Minutillo, and A. Perna, Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances, Appl. Energy, 108, 82-91 (2013). https://doi.org/10.1016/j.apenergy.2013.02.067
- H. Ishaq and I. Dincer, Comparative assessment of renewable energy-based hydrogen production methods, Renew. Sust. Energ. Rev., 135, 13 (2021).
- M. Gratzel, Mesoscopic solar cells for electricity and hydrogen production from sunlight, Chem. Lett., 34, 8-13 (2005). https://doi.org/10.1246/cl.2005.8
- E. Hosseinzadeh and M. Rokni, Development and validation of a simple analytical model of the proton exchange membrane fuel cell (PEMFC) in a fork-lift truck power system, Int. J. Green Energy, 10, 523-543 (2013). https://doi.org/10.1080/15435075.2012.678525
- L. Barelli, G. Bidini, and A. Ottaviano, Optimization of a PEMFC/battery pack power system for a bus application, Appl. Energy, 97, 777-784 (2012). https://doi.org/10.1016/j.apenergy.2011.11.043
- Y. Feng and Z. Dong, Integrated design and control optimization of fuel cell hybrid mining truck with minimized lifecycle cost, Appl. Energy, 270, 11 (2020).
- N. G. Moreno, M. C. Molina, D. Gervasio, and J. Francisco Perez Robles, Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost, Renew. Sust. Energ. Rev., 52, 897-906 (2015). https://doi.org/10.1016/j.rser.2015.07.157
- P. C. Okonkwo, O. O. Ige, E. M. Barhoumi, P. C. Uzoma, W. Emori, A. Benamor, and A. M. Abdullah, Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review, Int. J. Hydrog. Energy, 46, 15850-15865 (2021). https://doi.org/10.1016/j.ijhydene.2021.02.078
- U.S. Drive, Fuel cell technical team roadmap, New York: US Drive Partnership, 1-34 (2017).
- X. Duan, F. Cao, R. Ding, X. Li, Q. Li, R. Aisha, S. Zhang, K. Hua, Z. Rui, Y. Wu, J. Li, A. Li, and J. Liu, Cobalt-doping stabilized active and durable sub-2 nm Pt nanoclusters for low-Pt-loading PEMFC cathode, Adv. Energy Mater., 12, 9 (2022).
- J. P. Owejan, J. E. Owejan, and W. Gu, Impact of platinum loading and catalyst layer structure on PEMFC performance, J. Electrochem. Soc., 160, 824-833 (2013).
- Q. Ye and T. Van Nguyen, Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions, J. Electrochem. Soc., 154, 1242-1251 (2007).
- S. A. Atyabi and E. Afshari, A numerical multiphase CFD simulation for PEMFC with parallel sinusoidal flow fields, J. Therm. Anal. Calorim., 135, 1823-1833 (2019). https://doi.org/10.1007/s10973-018-7270-3
- D. Chu and R. Jiang, Performance of polymer electrolyte membrane fuel cell PEMFC stacks Part I. Evaluation and simulation of an air-breathing PEMFC stack, J. Power Sources, 83, 128-133 (1999). https://doi.org/10.1016/S0378-7753(99)00285-2
- R. F. Mann, J. C. Amphlett, M. A. I. Hooper, H. M. Jensen, B. A. Peppley, and P. R. Roberge, Development and application of a generalised steady-state electrochemical model for a PEM fuel cell, J. Power Sources, 86, 173-180 (2000). https://doi.org/10.1016/S0378-7753(99)00484-X
- M. Ceraolo, C. Miulli, and A. Pozio, Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description, J. Power Sources, 113, 131-144 (2003). https://doi.org/10.1016/S0378-7753(02)00565-7
- J. Kim, S.-M. Lee, and S. Srinivasan, Modeling of proton exchange membrane fuel cell performance with an empirical equation, J. Electrochem. Soc., 142, 2670-2674 (1995). https://doi.org/10.1149/1.2050072
- J. P. Owejan, T. A. Trabold, D. L. Jacobson, M. Arif, and S. G. Kandlikar, Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell, Proceedings of the Fifth International Conference on Nanochannels, Microchannels and Minichannels. June 18-20, Puebla, Mexico (2007).
- A. Androniea, I. Stamatin, V. Girleanu, V. Ionescu, and N. Buzbuchi, Simplified mathematical model for polarization curve validation and experimental performance evaluation of a PEM fuel cell system, Procedia Manuf., 32, 810-819 (2019). https://doi.org/10.1016/j.promfg.2019.02.289
- R. O'Hayre, S.-W. Cha, W. G. Colella, and F. B. Prinz, Fuel Cell Fundamentals, 3rd ed, 29-258, hanteemedia, Korea (2017).
- R. Omrani and B. Shabani, Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells, Int. J. Hydrog. Energy, 44, 3834-3860 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.120
- K. Kim, Y.-J. Sohn, M. Kim, and W.-Y. Lee, Numerical study on the effects of GDL porosity on the PEMFC performance, J. Mech. Sci. Tech., 33, 1022-1030 (2009).
- J. Ge, A. Higier, and H. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance, J. Power Sources, 159, 922-927 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.069
- X. Zhu, P. C. Sui, and N. Djilali, Dynamic behaviour of liquid water emerging from a GDL pore into a PEMFC gas flow channel, J. Power Sources, 172, 287-295 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.024
- J. Kim and J. Kim, Effect of gas diffusion layer compression and inlet relative humidity on PEMFC performance, Appl. Chem. Eng., 32, 68-74 (2021).
- Y. G. Yoon, W. Y. Lee, G. G. Park, T. H. Yang, and C. S. Kim, Effects of channel configurations of flow field plates on the performance of a PEMFC, Electrochim. Acta, 50, 709-712 (2004). https://doi.org/10.1016/j.electacta.2004.01.111