DOI QR코드

DOI QR Code

Experimental investigation of the excitation frequency effects on wall stress in a liquid storage tank considering soil-structure-fluid interaction

  • Diego Hernandez-Hernandez (Department of Civil and Environmental Engineering, The University of Auckland) ;
  • Tam Larkin (Department of Civil and Environmental Engineering, The University of Auckland) ;
  • Nawawi Chouw (Department of Civil and Environmental Engineering, The University of Auckland)
  • 투고 : 2023.10.20
  • 심사 : 2024.02.20
  • 발행 : 2024.02.25

초록

This research addresses experimentally the relationship between the excitation frequency and both hoop and axial wall stresses in a water storage tank. A low-density polyethylene tank with six different aspect ratios (water level to tank radius) was tested using a shake table. A laminar box with sand represents a soil site to simulate Soil-Structure Interaction (SSI). Sine excitations with eight frequencies that cover the first free vibration frequency of the tank-water system were applied. Additionally, Ricker wavelet excitations of two different dominant frequencies were considered. The maximum stresses are compared with those using a nonlinear elastic spring-mass model. The results reveal that the coincidence between the excitation frequency and the free-vibration frequency of the soil-tank-water system increases the sloshing intensity and the rigid-like body motion of the system, amplifying the stress development considerably. The relationship between the excitation frequency and wall stresses is nonlinear and depends simultaneously on both sloshing and uplift. In most cases, the maximum stresses using the nonlinear elastic spring-mass model agree with those from the experiments.

키워드

과제정보

The authors wish to thank the Mexican Government for awarding the first author the doctoral scholarship "CONACyT-SENER Hidrocarburos" for his PhD research at the University of Auckland.

참고문헌

  1. American Petroleum Institute (2007), API 650: Welded Steel Tanks for Oil Storage, 11th, Washington, D.C., API 650.
  2. Bakalis, K. and Karamanos, S.A. (2021), "Uplift mechanics of unanchored liquid storage tanks subjected to lateral earthquake loading", Thin Wall. Struct., 158, 107145. https://doi.org/10.1016/j.tws.2020.107145.
  3. Cambra, F.J. (1982), "Earthquake response considerations of broad liquid storage tanks", Report No. UCB/EERC-82/25, Berkeley, California.
  4. Cho, K.H., Kim, M.K., Lim, Y.M. and Cho, S.Y. (2004), "Seismic response of base-isolated liquid storage tanks considering fluid-structure-soil interaction in time domain", Soil Dyn. Earthq. Eng., 24(11), 839-852. https://doi.org/10.1016/j.soildyn.2004.05.003.
  5. Flugge, W. (1973), Stresses in Shells, 2nd Edition, Springer-Verlag, New York, USA.
  6. Haroun, M.A. and Abou-Izzeddine, W. (1992), "Parametric study of seismic soil-tank interaction. I: Horizontal excitation", J. Struct. Eng., 118(3), 783-797. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:3(783).
  7. Hatayama, K. (2008), "Lessons from the 2003 Tokachi-oki, Japan, earthquake for prediction of long-period strong ground motions and sloshing damage to oil storage tanks", J. Seismol., 12(2), 255-263. https://doi.org/10.1007/s10950-007-9066-y.
  8. Hernandez-Hernandez, D., Larkin, T. and Chouw, N. (2021), "Evaluation of the adequacy of a spring-mass model in analyses of liquid sloshing in anchored storage tanks", Earthq. Eng. Struct. Dyn., 50(14), 3916-3935. https://doi.org/10.1002/eqe.3539.
  9. Hernandez-Hernandez, D., Larkin, T. and Chouw, N. (2021a), "Impact of the excitation frequencies on wall stresses in a storage tank", Eng. Struct., 244, 112775. https://doi.org/10.1016/j.engstruct.2021.112775.
  10. Hernandez-Hernandez, D., Larkin, T. and Chouw, N. (2021b), "Shake table investigation of nonlinear soil-structure-fluid interaction of a thin-walled storage tank under earthquake load", Thin Wall. Struct., 167, 108143. https://doi.org/10.1016/j.tws.2021.108143.
  11. Hernandez-Hernandez, D., Larkin, T. and Chouw, N. (2022), "Lid induced sloshing suppression and evaluation of wall stresses in a liquid storage tank including seismic soil-structure interaction", Earthq. Eng. Struct. Dyn., 51(11), 2708-2729. https://doi.org/10.1002/eqe.3697.
  12. Hernandez-Hernandez, D., Larkin, T., Chouw, N. and Banide, Y. (2020), "Experimental findings of the suppression of rotary sloshing on the dynamic response of a liquid storage tank", J. Fluid. Struct., 96, 103007. https://doi.org/10.1016/j.jfluidstructs.2020.103007.
  13. Hernandez-Hernandez, D., Mammeri, C., Larkin, T. and Chouw, N. (2019), "Estudio experimental de un tanque cilindrico para almacenar liquidos considerando la interaccion fluido-structurasuelo", XXII Congreso Nacional de Ingenieria Sismica, Monterrey, Mexico, November.
  14. Heyman, J. (1977), Equilibrium of Shell Structures, Oxford University Press, Oxford.
  15. Hori, N. (1990), "Effects of soil on the dynamic response of liquid-tank systems", J. Press. Ves. Technol., 112(2), 118. https://doi.org/10.1115/1.2928596.
  16. Housner, G.W. (1957), "Dynamic pressures on accelerated fluid containers", Bull. Seismol. Soc. Am., 47(1), 15-35. https://doi.org/10.1785/BSSA0470010015.
  17. Kalogerakou, M.E., Maniatakis, C.A., Spyrakos, C.C. and Psarropoulos, P.N. (2017), "Seismic response of liquid-containing tanks with emphasis on the hydrodynamic response and near-fault phenomena", Eng. Struct., 153, 383-403. https://doi.org/10.1016/j.engstruct.2017.09.026.
  18. Kim, J., Chang, S.H. and Yun, C.B. (2002), "Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading", Struct. Eng. Mech., 13(6), 615-638. https://doi.org/10.12989/sem.2002.13.6.615.
  19. Kirtas, E., Rovithis, E. and Makra, K. (2020), "On the modal response of an instrumented steel water-storage tank including soil-structure interaction", Soil Dyn. Earthq. Eng., 135, 106198. https://doi.org/10.1016/j.soildyn.2020.106198.
  20. Kobayashi, N., Tashita, T., Takizawa, S. and Taniguchi, T. (2015), "Simplified rocking model of unanchored cylindrical tank including baseplate uplift and cross sectional deformation of tank shell due to seismic load", ASME 2015 Pressure Vessels and Piping Conference, Boston, Massachusetts, USA, July.
  21. Larkin, T. (2008), "Seismic response of liquid storage tanks incorporating soil structure interaction", J. Geotech. Geoenviron. Eng., 134(12), 1804-1814. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1804).
  22. Maekawa, A. (2012), "Recent advances in seismic response analysis of cylindrical liquid storage tanks", Earthquake-Resistant Structures-Design, Assessment and Rehabilitation, 307-336.
  23. Malhotra, P.K. (2000), "Practical nonlinear seismic analysis of tanks", Earthq. Spectra, 16(2), 473-492. https://doi.org/10.1193/1.1586122.
  24. Malhotra, P.K. and Veletsos, A.S. (1994), "Beam model for base-uplifting analysis of cylindrical tanks", J. Struct. Eng., 120(12), 3471-3488. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:12(3471).
  25. Malhotra, P.K., Wenk, T. and Wieland, M. (2000), "Simple procedure for seismic analysis of liquid-storage tanks", Struct. Eng. Int., 10(3), 197-201. https://doi.org/10.2749/101686600780481509.
  26. Manos, G.C. and Clough, R.W. (1982), "Further study of the earthquake response of a broad cylindrical liquid-storage tank model", Earthquake Engineering Research Center UCB/EERC 82/07, Berkeley, California.
  27. Moradi, R., Behnamfar, F. and Hashemi, S. (2018), "Mechanical model for cylindrical flexible concrete tanks undergoing lateral excitation", Soil Dyn. Earthq. Eng., 106, 148-162. https://doi.org/10.1016/j.soildyn.2017.12.008.
  28. NZSEE (2009), Seismic Design of Storage Tanks, Recommendations of a Study Group of the New Zealand Society for Earthquake Engineering, New Zealand Society for Earthquake Engineering, Wellington.
  29. Ormeno, M., Larkin, T. and Chouw, N. (2015), "The effect of seismic uplift on the shell stresses of liquid-storage tanks", Earthq. Eng. Struct. Dyn., 44(12), 1979-1996. https://doi.org/10.1002/eqe.2568.
  30. Ormeno, M., Larkin, T. and Chouw, N. (2019), "Experimental study of the effect of a flexible base on the seismic response of a liquid storage tank", Thin Wall. Struct., 139, 334-346. https://doi.org/10.1016/j.tws.2019.03.013.
  31. Qin, X., Chen, Y. and Chouw, N. (2013), "Effect of uplift and soil nonlinearity on plastic hinge development and induced vibrations in structures", Adv. Struct. Eng., 16(1), 135-147. https://doi.org/10.1260/1369-4332.16.1.135.
  32. Spritzer, J.M. and Guzey, S. (2017), "Review of API 650 Annex E: Design of large steel welded aboveground storage tanks excited by seismic loads", Thin Wall. Struct., 112, 41-65. https://doi.org/10.1016/j.tws.2016.11.013.
  33. Uckan, E., Umut, O., Sisman, F. N., Karimzadeh, S. and Askan, A. (2018), "Seismic response of base isolated liquid storage tanks to real and simulated near fault pulse type ground motions", Soil Dyn. Earthq. Eng., 112, 58-68. https://doi.org/10.1016/j.soildyn.2018.04.030.
  34. Veletsos, A.S. (1984), "Seismic response and design of liquid storage tanks", Guidelines for the Seismic Design of Oil and Gas Pipelines Systems, Technical Council on Lifetime Earthquake Engineering, ASCE, New York.
  35. Veletsos, A.S. and Tang, Y. (1990), "Soil-structure interaction effects for laterally excited liquid storage tanks", Earthq. Eng. Struct. Dyn., 19(4), 473-496. https://doi.org/10.1002/eqe.4290190402.
  36. Veletsos, A.S., Tang, Y. and Tang, H.T. (1992a), "Dynamic response of flexibly supported liquid-storage tanks", J. Struct. Eng., 118(1), 264-283. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:1(264).
  37. Yazdanian, M., Ingham, J.M., Lomax, W., Wood, R. and Dizhur, D. (2020), "Damage observations and remedial options for approximately 1500 legged and flat-based liquid storage tanks following the 2016 Kaikoura earthquake", Struct., 24, 357-376. https://doi.org/10.1016/j.istruc.2020.01.024.
  38. Yoshida, S. (2014), "Review of earthquake damages of aboveground storage tanks in Japan and Taiwan", Pressure Vessels and Piping Conference, Anaheim, California, USA.
  39. Zhao, M. and Zhou, J. (2018), "Review of seismic studies of liquid storage tanks", Struct. Eng. Mech., 65(5), 557-572. https://doi.org/10.12989/sem.2018.65.5.557.