DOI QR코드

DOI QR Code

Numerical and analytical investigation of cyclic behavior of D-Shape yielding damper

  • Kambiz Cheraghi (Department of Civil Engineering, Faculty of Engineering, Razi University) ;
  • Mehrzad TahamouliRoudsari (Department of Civil Engineering, Kermanshah Branch, Islamic Azad University) ;
  • Sasan Kiasat (Department of Civil and Environmental Engineering, AmirKabir University) ;
  • Kaveh Cheraghi (Department of Mechanical Engineering, Engineering Faculty, Razi University)
  • Received : 2023.11.24
  • Accepted : 2024.02.16
  • Published : 2024.02.25

Abstract

The purpose of this research was to investigate the cyclic behavior of the D-shaped dampers (DSD). Similarly, at first, the numerical model was calibrated using the experimental sample. Then, parametric studies were conducted in order to investigate the effect of the radius and thickness of the damper on energy dissipation, effective and elastic stiffness, ultimate strength, and equivalent viscous damping ratio (EVDR). An analytical equation for the elastic stiffness of the DSD was also proposed, which showed good agreement with experimental results. Additionally, approximate equations were introduced to calculate the elastic and effective stiffness, ultimate strength, and energy dissipation. These equations were presented according to the curve fitting technique and based on numerical results. The results indicated that reducing the radius and increasing the thickness led to increased energy dissipation, effective stiffness, and ultimate strength of the damper. On the other hand, increasing the radius and thickness resulted in an increase in EVDR. Moreover, the ratio of effective stiffness to elastic stiffness also played a crucial role in increasing the EVDR. The thickness and radius of the damper were evaluated as the most effective dimensions for reducing energy dissipation and EVDR.

Keywords

References

  1. Aghani, H., Cheraghi, K. and Bakhshipour, M. (2023), "Numerical investigation of the effect of aluminum yielding damper for the retrofitting of semi-rigid steel frames", Periodica Polytechnica Civil Eng., https://doi.org/10.3311/PPci.23119. 
  2. Aghlara, R., Tahir, M.M. and Adnan, A.B. (2018), "Experimental study of Pipe-Fuse Damper for passive energy dissipation in structures", J. Constr. Steel Res., 148, 351-360. https://doi.org/10.1016/j.jcsr.2018.06.004. 
  3. Chaboche, J.L. (2008), "A review of some plasticity and viscoplasticity constitutive theories", Int. J. Plast., 24(10), 1642-1693. https://doi.org/10.1016/j.ijplas.2008.03.009. 
  4. Chaboche, J.L., Kanoute, P. and Azzouz, F. (2012), "Cyclic inelastic constitutive equations and their impact on the fatigue life predictions", Int. J. Plast., 35, 44-66. https://doi.org/10.1016/j.ijplas.2012.01.010. 
  5. Chan, R.W.K. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. https://doi.org/10.1016/j.engstruct.2007.07.005. 
  6. Cheraghi, K., Tahamouliroudsari, M. and Kiasat, S. (2023a), "Numerical and analytical investigation of U-shape dampers and its effect on steel frames", Struct., 55, 498-509. https://doi.org/10.1016/j.istruc.2023.06.037. 
  7. Cheraghi, K., Tahamouliroudsari, M., Kiasat, S. and Cheraghi, K. (2023b), "Numerical study of metallic dampers' effect on seismic performance of concrete frames", Asian J. Civil Eng., 1-11. https://doi.org/10.1007/s42107-023-00917-6. 
  8. Cheraghi, K., Tahamouliroudsari, M., Kiasat, S. and Esfandiari, J. (2023c), "Numerical investigation of cyclic behavior of angled u-shaped yielding damper on steel frames", Periodica Polytechnica Civil Eng., https://doi.org/10.3311/PPci.23213. 
  9. Coates, R.C., Coutie, M. and Kong, F.K. (2018), Structural Analysis, CRC Press. 
  10. Evans, M. (2009), Minitab Manual, WH Freeman, New York. 
  11. Ghaedi, K., Ibrahim, Z., Javanmardi, A. and Rupakhety, R. (2021), "Experimental study of a new bar damper device for vibration control of structures subjected to earthquake loads", J. Earthq. Eng., 25(2), 300-318. https://doi.org/10.1080/13632469.2018.1515796. 
  12. Ghaedi, K., Javanmardi, A., Ibrahim, Z., Gordan, M., Rashid, R.S., Khatibi, H. and Vaghei, R. (2023), "Experimental and numerical studies on the cyclic performance of structural frames equipped with bar dampers", Struct., 50, 707-722. https://doi.org/10.1016/j.istruc.2023.02.070. 
  13. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751. 
  14. Gullu, A., Ozkaynak, H., Khajehdehi, A., Gokce, T., Azizisales, F., Bal, I.E., Smyrou, E., Yuksel, E. and Karadogan, F. (2015), "Derivation of the closed form equations for the energy dissipative steel cushions", 14th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, San Diego, CA, USA. 
  15. Hsu, H.L. and Halim, H. (2018), "Brace performance with steel curved dampers and amplified deformation mechanisms", Eng. Struct., 175, 628-644. https://doi.org/10.1016/j.engstruct.2018.08.052. 
  16. Kim, S.W. and Kim, K.H. (2020), "Evaluation of structural behavior of hysteretic steel dampers under cyclic loading", Appl. Sci., 10(22), 8264. https://doi.org/10.3390/app10228264. 
  17. Lewandowski, R., Bartkowiak, A. and Maciejewski, H. (2012), "Dynamic analysis of frames with viscoelastic dampers: A comparison of damper models", Struct. Eng. Mech., 41(1), 113-137. https://doi.org/10.12989/sem.2012.41.1.113. 
  18. Li, Z., Shu, G. and Huang, Z. (2019), "Development and cyclic testing of an innovative shear-bending combined metallic damper", J. Constr. Steel Res., 158, 28-40. https://doi.org/10.1016/j.jcsr.2019.03.008. 
  19. Ozkaynak, H. (2017), "The effects of special metallic dampers on the seismic behavior of a vulnerable RC frame", Struct. Eng. Mech., 61(4), 483-496. https://doi.org/10.12989/sem.2017.61.4.483. 
  20. Ozkaynak, H., Khajehdehi, A., Yuksel, E. and Karadogan, F. (2021), "Improvement of seismic performance of precast frames with cladding panels fastened by energy dissipative steel cushions", Bull. Earthq. Eng., 19(12), 5339-5367. https://doi.org/10.1007/s10518-021-01175-0. 
  21. Rousta, A.M. (2023), "Seismic retrofitting of steel momentresisting frames (SMRFs) using steel pipe dampers", Struct. Eng. Mech., 87(1), 69-84. https://doi.org/10.12989/sem.2023.87.1.069. 
  22. Rousta, A.M. and Azandariani, M.G. (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel Compos. Struct., 43(5), 565. https://doi.org/10.12989/scs.2022.43.5.565. 
  23. Rousta, A.M., Gorji Azandariani, M., Safaei Ardakani, M.A. and Shoja, S. (2022), "Cyclic behavior of an energy dissipation system with the vertical steel panel flexural-yielding dampers", Struct., 45, 629-644. https://doi.org/10.1016/j.istruc.2022.09.047. 
  24. Rousta, A.M., Shoja, S. and Amin Safaei Ardakani, M. (2023), "Investigating cyclic and pushover performance of different metallic yielding dampers", J. Rehab. Civil Eng., 11(3), 122-143. https://doi.org/10.22075/jrce.2022.26848.1639. 
  25. Sahoo, D.R., Singhal, T., Taraithia, S.S. and Saini, A. (2015), "Cyclic behavior of shear-and-flexural yielding metallic dampers", J. Constr. Steel Res., 114, 247-257. https://doi.org/10.1016/j.jcsr.2015.08.006. 
  26. Sanati, S.H. and Karamodin, A. (2023), "Optimum seismic design of frame structures with and without metallic yielding dampers considering life-cycle cost", J. Build. Eng., 76, 107335. https://doi.org/10.1016/j.jobe.2023.107335. 
  27. Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M.W. and Mcnamara, R.J. (2008), "Energy dissipation systems for seismic applications: Current practice and recent developments", J. Struct. Eng., 134(1), 3-21. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3). 
  28. Tahamouliroudsari, M., Cheraghi, K. and Aghayari, R. (2022), "Investigating the retrofit of RC frames using TADAS yielding dampers", Struct. Durab. Hlth. Monit., 16(4), 343-359. https://doi.org/10.32604/sdhm.2022.07927. 
  29. Tahamouliroudsari, M., Cheraghi, K. and Habibi, M.R. (2019), "Investigation of retrofitting RC moment resisting frames with ADAS yielding dampers", Asian J. Civil Eng., 20(1), 125-133. https://doi.org/10.1007/s42107-018-0092-6. 
  30. Teruna, D.R., Majid, T.A. and Budiono, B. (2015), "Experimental study of hysteretic steel damper for energy dissipation capacity", Adv. Civil Eng., 2015, Article ID 631726. https://doi.org/10.1155/2015/631726. 
  31. Zhang, C., Zhou, Y., Weng, D.G., Lu, D.H. and Wu, C.X. (2015), "A methodology for design of metallic dampers in retrofit of earthquake-damaged frame", Struct. Eng. Mech., 56(4), 569-588. https://doi.org/10.12989/sem.2015.56.4.569. 
  32. Zhou, Q. and Lu, X. (2004), "Shaking table test and numerical analysis of a combined energy dissipation system with metallic yield dampers and oil dampers", Struct. Eng. Mech., 17(2), 187-201. https://doi.org/10.12989/sem.2004.17.2.187. 
  33. Zhuang, L., Wang, J., Nie, X. and Wu, Z. (2022), "Experimental study on the cyclic behaviour of shear links made of BLY160 steel", Thin Wall. Struct., 174, 109072. https://doi.org/10.1016/j.tws.2022.109072.