참고문헌
- Alhozaimy, A.M., Soroushian, P. and Mirza, F. (1996), "Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials", Cement Concrete Compos., 18(2), 85-92. https://doi.org/10.1016/0958-9465(95)00003-8.
- Al-Osta, M.A., Isa, M.N., Baluch, M.H. and Rahman, M.K. (2017), "Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete", Constr. Build. Mater., 134, 279-296. https://doi.org/10.1016/j.conbuildmat.2016.12.094.
- Al-Qadi, A.N. and Al-Zaidyeen, S.M. (2014), "Effect of fiber content and specimen shape on residual strength of polypropylene fiber self-compacting concrete exposed to elevated temperatures", J. King Saud Univ., Eng. Sci., 26(1), 33-39. https://doi.org/10.1016/j.jksues.2012.12.002.
- Alsanusi, S. and Bentaher, L. (2015), "Prediction of compressive strength of concrete from early age test result using design of experiments (RSM)", Int. J. Civil Environ. Struct. Constr. Arch. Eng., 9(12), 1559-1563.
- Avet, F., Snellings, R., Alujas Diaz, A., Ben Haha, M. and Scrivener, K. (2016), "Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays", Cement Concrete Res., 85, 1-11. https://doi.org/10.1016/j.cemconres.2016.02.015.
- Awolusi, T.F., Oke, O.L., Akinkurolere, O.O. and Sojobi, A.O. (2019), "Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fiber extracted from waste tires with limestone powder as filler", Case Stud. Constr. Mater., 10, e00212. https://doi.org/10.1016/j.cscm.2018.e00212.
- Chan, C.M., Ko, T.M. and Hiraoka, H. (1996), "Polymer surface modification by plasmas and photons", Surf. Sci. Report., 24(1-2), 1-54. https://doi.org/10.1016/0167-5729(96)80003-3.
- Chen, G., He, Y., Yang, H., Chen, J.F. and Guo, Y.C. (2014), "Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures", Constr. Build. Mater., 71, 1-15. https://doi.org/10.1016/j.conbuildmat.2014.08.012.
- Dhandapani, Y. and Santhanam, M. (2017), "Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance", Cement Concrete Compos., 84, 36-47. https://doi.org/10.1016/j.cemconcomp.2017.08.012.
- Dhandapani, Y., Sakthivel, T., Santhanam, M., Gettu, R. and Pillai, R.G. (2018), "Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3)", Cement Concrete Res., 107, 136-151. https://doi.org/10.1016/j.cemconres.2018.02.005.
- Dopko, M., Najimi, M., Shafei, B., Wang, X., Taylor, P. and Phares, B.M. (2018), "Flexural performance evaluation of fiber-reinforced concrete incorporating multiple macro-synthetic fibers", Transp. Res. Record: J. Transp. Res. Board, 2672, 1-12. https://doi.org/abs/10.1177/0361198118798986.
- Du, Q., Wei, J. and Lv, J. (2017), "Effects of high temperature on mechanical properties of polyvinyl alcohol engineered cementitious composites", Int. J. Civil Eng., 16, 965-972. http://doi.org/10.1007/s40999-017-0245-0.
- Felekoglu, B., Felekoglu, K.T., Ranade, R., Zhang, Q. and Li, V.C. (2014), "Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC", Compos. Part B: Eng., 60, 359-370. https://doi.org/10.1016/j.compositesb.2013.12.076.
- Felekoglu, B., Tosun, K. and Baradan, B. (2009), "A comparative study on the flexural performance of plasma treated polypropylene fiber reinforced cementitious composites", J. Mater. Proc. Technol., 209(11), 5133-5144. https://doi.org/10.1016/j.jmatprotec.2009.02.015.
- Felekoglu, B., Tosun-Felekoglu, K., Keskinates, M. and Godek, E. (2016), "A comparative study on the compatibility of PVA and HTPP fibers with various cementitious matrices under flexural loads", Constr. Build. Mater., 121, 423-428. https://doi.org/10.1016/j.conbuildmat.2016.06.004.
- Fiore, V., Scalici, T., Di Bella, G. and Valenza, A.A. (2015), "Review on basalt fiber and its composites", Compos. Part B: Eng., 74, 74-94. https://doi.org/10.1016/j.compositesb.2014.12.034.
- Gbozee, M., Zheng, K., He, F. and Zeng X (2018), "The influence of aluminum from metakaolin on chemical binding of chloride ions in hydrated cement pastes", Appl. Clay Sci., 158, 186-194. https://doi.org/10.1016/j.clay.2018.03.038.
- Godek, E., Tosun Felekoglu, K., Keskinates, M. and Felekoglu, B. (2017), "Development of flaw tolerant fiber reinforced cementitious composites with calcined kaolin", Appl. Clay Sci., 146, 423-431. https://doi.org/10.1016/j.clay.2017.06.029.
- Guo, Y., Zhang, T., Tian, W., Wei, J. and Yu, Q. (2019), "Physically and chemically bound chlorides in hydrated cement pastes: A comparison study of the effects of silica fume and metakaolin", J. Mater. Sci., 54(3), 2152-2169. https://doi.org/2152-2169. 10.1007/s10853-018-2953-5.
- Hao, Y., Cheng, L., Hao, H. and Shahin, M.A. (2018), "Enhancing fiber/matrix bonding in polypropylene fiber reinforced cementitious composites by microbially induced calcite precipitation pre-treatment", Cement Concrete Compos., 88, 1-7. https://doi.org/10.1016/j.cemconcomp.2018.01.001.
- Huang, B.T., Li, Q.H., Xu, S.L. and Zhou, B. (2019), "Strengthening of reinforced concrete structure using sprayable fiber reinforced cementitious composites with high ductility", Compos. Struct., 220, 940-952. https://doi.org/10.1016/j.compstruct.2019.04.061.
- Karimpour, H. and Mazloom, M. (2022), "Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers", Struct. Eng. Mech., 8(2), 575-589. https://doi.org/10.12989/sem.2022.81.5.575.
- Karoly, Z., Kalacska, G., Zsidai, L., Mohai, M. and Klebert, S. (2018), "Improvement of adhesion properties of polyamide 6 and polyoxymethylene-copolymer by atmospheric cold plasma treatment" Polym., 10(12), 1380. https://doi.org/10.3390/polym10121380.
- Li, Y., Li, W., Deng, D., Wang, K. and Duan, W.H. (2018), "Reinforcement effects of polyvinyl alcohol and polypropylene fibers on flexural behaviors of sulfoaluminate cement matrices", Cement Concrete Compos., 88, 139-149. https://doi.org/10.1016/j.cemconcomp.2018.02.004.
- Long, W.J., Wu, Z., Khayat, K.H., Wei, J., Dong, B., Xing, F. and Zhang, J. (2022), "Design, dynamic performance and ecological efficiency of fiber-reinforced mortars with different binder systems: Ordinary Portland cement, limestone calcined clay cement and alkali-activated slag", J. Clean. Prod., 337, 130478. https://doi.org/10.1016/j.jclepro.2022.130478.
- Longhi, M.A., Rodriguez, E.D., Walkley, B., Zhang, Z. and Kirchheim, A.P. (2020), "Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation", Compos. Part B: Eng., 182, 107671. https://doi.org/10.1016/j.compositesb.2019.107671.
- Maraghechi, H., Avet, F., Wong, H., Kamyab, H. and Scrivener, K. (2018), "Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport", Mater. Struct., 51(5), 1-17. https://doi.org/10.1617/s11527-018-1255-3.
- Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers", Adv. Mater. Res., 8(2), 137-154. http://doi.org/10.12989/amr.2019.8.2.137.
- Mazloom, M. and Mirzamohammadi, S. (2021a), "Fracture of fiber-reinforced cementitious composites after exposure to elevated temperatures", Mag. Concrete Res., 73(14), 701-713. https://doi.org/10.1680/jmacr.19.00401.
- Mazloom, M. and Mirzamohammadi, S. (2021b), "Computing the fracture energy of fiber reinforced cementitious composites using response surface methodology", Adv. Comput. Des., 6(3), 225-239. http://doi.org/10.12989/acd.2021.6.3.225.
- Mirzamohammadi, S. and Mazloom, M. (2021), "Monitoring the required energy for the crack propagation of fiber-reinforced cementitious composite", Struct. Monit. Mainten., 8(3), 279-294. https://doi.org/10.12989/smm.2021.8.3.279.
- Mirzamohammadi, S. and Soltani, M. (2023), "Development of a green high-performance fiber-reinforced cementitious composite using local ingredients", J. Mater. Civil Eng., 36(4), 04024048. https://doi.org/10.1061/jmcee7/mteng-16362.
- Mohammed, B.S., Khed, V.C. and FadhilNuruddin, M. (2018), "Rubbercrete mixture optimization using response surface methodology", J. Clean. Prod., 171, 1605-1621. https://doi.org/10.1016/j.jclepro.2017.10.102.
- Muzenda, T.R., Hou, P., Kawashima, S., Sui, T. and Cheng, X. (2020), "The role of limestone and calcined clay on the rheological properties of LC3", Cement Concrete Compos., 107, 103516. https://doi.org/10.1016/j.cemconcomp.2020.103516.
- Ozawa, M. and Morimoto, H. (2014), "Effect of various fibers on high-temperature spalling in high-performance concrete", Constr. Build. Mater., 71, 83-92. https://doi.org/10.1016/j.conbuildmat.2014.07.068.
- Ozbay, E., Karahan, O., Lachemi, M., Hossain, K.M.A. and Atis, C.D. (2012), "Investigation of properties of engineered cementitious composites incorporating high volumes of fly ash and metakaolin", ACI Mater. J., 109, 565-571.
- Panda, B., Ruan, S., Unluer, C. and Tan, M.J. (2020), "Investigation of the properties of alkali-activated slag mixes involving the use of nano clay and nucleation seeds for 3D printing", Compos. Part B: Eng., 186, 107826. https://doi.org/10.1016/j.compositesb.2020.107826.
- Rambo, D.A.S., Blanco, A., de Figueiredo, A.D., dos Santos, E.R.F., Toledo Filho, R.D. and Gomes, O.D.F.M. (2018), "Study of temperature effect on macro-synthetic fiber reinforced concretes by means of Barcelona tests: An approach focused on tunnels assessment", Constr. Build. Mater., 158, 443-453. https://doi.org/10.1016/j.conbuildmat.2017.10.046.
- Ramezanianpour, A.A., Esmaeili, M., Ghahari, S. and Najafi, M.H. (2013), "Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers", Constr. Build. Mater., 44, 411-418. https://doi.org/10.1016/j.conbuildmat.2013.02.076.
- Rios, J.D., Cifuentes, H., Leiva, C., Garcia, C. and Maria, D. (2018), "Behavior of high-strength polypropylene fiber-reinforced self-compacting concrete exposed to high temperatures", J. Mater. Civil Eng., 30(11), 04018271. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002491.
- Ritter, A. and Munoz-Carpena, R. (2013), "Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments", J. Hydrol., 480, 33-45. https://doi.org/10.1016/j.jhydrol.2012.12.004.
- Rostami, R., Zarrebini, M., Mandegari, M., Sanginabadi, K., Mostofinejad, D., Abtahi, S.M. and Rostami, R. (2019), "The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties", Cement Concrete Compos., 97, 118-124. https://doi.org/10.1016/j.cemconcomp.2018.12.012.
- Ruano, G., Isla, F., Luccioni, B., Zerbino, R. and Giaccio, G. (2018), "Steel fibers pull-out after exposure to high temperatures and its contribution to the residual mechanical behavior of high strength concrete", Constr. Build. Mater., 163, 571-585. https://doi.org/10.1016/j.conbuildmat.2017.12.129.
- Seyreka, Y. and Felekoglub, K.T. (2022), "Selection of proper matrix with plasma-treated HTPP fiber reinforced cementitious composites in terms of flexural toughness", J. Build. Eng., 45, 103632. https://doi.org/10.1016/j.jobe.2021.103632.
- Shi, Z., Ferreiro, S., Lothenbach, B., Geiker, M.R., Kunther, W., Kaufmann, J., Herfort, D. and Skibsted, J. (2019), "Sulfate resistance of calcined clay-Limestone-Portland cements", Cement Concrete Res., 116, 238-251. https://doi.org/10.1016/j.cemconres.2018.11.003.
- Siad, H., Alyousif, A., Keskin, O.K., Keskin, S.B., Lachemi, M., Sahmaran, M. and Hossain, K.M.A. (2015), "Influence of limestone powder on mechanical, physical and self-healing behavior of engineered cementitious composites", Constr. Build. Mater., 99, 1-10. https://doi.org/10.1016/j.conbuildmat.2015.09.007.
- Sui, S., Georget, F., Maraghechi, H., Sun, W. and Scrivener, K. (2019), "Towards a generic approach to durability: Factors affecting chloride transport in binary and ternary cementitious materials", Cement Concrete Res., 124, 105783. https://doi.org/10.1016/j.cemconres.2019.105783.
- Takeda, T., Yasuoka, T., Hoshi, H., Sugimoto, S. and Iwahori, Y. (2019), "Effectiveness of flame-based surface treatment for adhesive bonding of carbon fiber reinforced epoxy matrix composites", Compos. Part A: Appl. Sci. Manuf., 119, 30-37. https://doi.org/10.1016/j.compositesa.2019.01.013.
- Trejbal, J., Horova, T. and Prosek, Z. (2017), "Pullout behavior of oxygen plasma treated polymer fibers from cement matrix", Acta Polytechnica CTU Proc., 13, 130. https://doi.org/10.14311/app.2017.13.0130.
- Trejbal, J., Nezerka, V., Somr, M., Fladr, J., Potocky, S., Artemenko, A. and Tesarek, P. (2018), "Deterioration of bonding capacity of plasma-treated polymer fiber reinforcement", Cement Concrete Compos., 89, 205-215. https://doi.org/10.1016/j.cemconcomp.2018.03.010.
- Turk, K. and Demirhan, S. (2017), "Effect of limestone powder on the rheological, mechanical and durability properties of ECC", Eur. J. Environ. Civil Eng., 21, 1151-1170. https://doi.org/10.1080/19648189.2016.1150902.
- van Zijl, G.P. and de Beer, L. (2018), "Sprayed strain-hardening cement-based composite overlay for shear strengthening of unreinforced load-bearing masonry", Adv. Struct. Eng., 22(5), 1121-1135. https://doi.org/10.1177/1369433218807686.
- Wei, J., Farzadnia, N., Nimoh, A.A. and Khayat, K.H. (2023), "Evaluation of residual flexural behavior of corroded fiber-reinforced super workable concrete beams", Cement Concrete Compos., 144, 105278. https://doi.org/10.1016/j.cemconcomp.2023.105278.
- Wei, J., Long, W.J., Khayat, K.H., Dong, B., Mei, L. and Xing, F. (2022), "Dynamical properties of environmental high-performance composites with calcined clay", J. Clean. Prod., 335, 130226. https://doi.org/10.1016/j.jclepro.2021.130226.
- Wu, H.C. and Li, V.C. (1999), "Fiber/cement interface tailoring with plasma treatment", Cement Concrete Compos., 21(3), 205-212. https://doi.org/10.1016/S0958-9465(98)00053-5.
- Yavuz, O. and Saka, C. (2013), "Surface modification with cold plasma application on kaolin and its effects on the adsorption of methylene blue", Appl. Clay Sci., 85(1), 96-102. https://doi.org/10.1016/j.clay.2013.09.011.
- Yu, J., Lin, J., Zhang, Z. and Li, V.C. (2015), "Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures", Constr. Build. Mater., 99, 82-89. http://doi.org/10.1016/j.conbuildmat.2015.09.002.
- Yu, K., Yu, J., Dai, J., Lu, J. and Shah, S. (2018), "Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers", Constr. Build. Mater., 158, 217-227. https://doi.org/10.1016/j.conbuildmat.2017.10.040.
- Yu, K.Q., Lu, Z.D., Dai, J.G. and Shah, S.P. (2020), "Direct tensile properties and stress-strain model of UHP-ECC", J. Mater. Civil Eng., 32(1), 04019334. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002975.
- Zhang, D., Jaworska, B., Zhu, H., Dahlquist, K. and Li, V.C. (2020), "Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3)", Cement Concrete Compos., 114, 103766. https://doi.org/10.1016/j.cemconcomp.2020.103766.
- Zheng, Y., Zhang, L.F. and Xia, L.P. (2018), "Investigation of the behavior of flexible and ductile ECC link slab reinforced with FRP", Constr. Build. Mater., 166, 694-711. https://doi.org/10.1016/j.conbuildmat.2018.01.188.
- Zhou, J., Qian, S., Sierra Beltran, M.G., Ye, G., van Breugel, K. and Li, V.C. (2010), "Development of engineered cementitious composites with limestone powder and blast furnace slag", Mater. Struct., 43, 803-814. https://doi.org/10.1617/s11527-009-9549-0.
- Zhu, H., Zhang, D., Wang, T., Wu, H. and Li, V.C. (2020), "Mechanical and self-healing behavior of low carbon engineered cementitious composites reinforced with PP-fibers", Constr. Build. Mater., 259, 119805. https://doi.org/10.1016/j.conbuildmat.2020.119805.
- Zhu, He., Yu, K. and Li, V.C. (2021), "Sprayable engineered cementitious composites (ECC) using calcined clay limestone cement (LC3) and PP fiber", Cement Concrete Compos., 115, 103868. https://doi.org/10.1016/j.cemconcomp.2020.103868.