DOI QR코드

DOI QR Code

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi (Faculty of Civil and Environmental Engineering, Tarbiat Modares University) ;
  • Masoud Soltani (Faculty of Civil and Environmental Engineering, Tarbiat Modares University)
  • Received : 2023.04.20
  • Accepted : 2024.02.05
  • Published : 2024.02.25

Abstract

High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

Keywords

References

  1. Alhozaimy, A.M., Soroushian, P. and Mirza, F. (1996), "Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials", Cement Concrete Compos., 18(2), 85-92. https://doi.org/10.1016/0958-9465(95)00003-8.
  2. Al-Osta, M.A., Isa, M.N., Baluch, M.H. and Rahman, M.K. (2017), "Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete", Constr. Build. Mater., 134, 279-296. https://doi.org/10.1016/j.conbuildmat.2016.12.094.
  3. Al-Qadi, A.N. and Al-Zaidyeen, S.M. (2014), "Effect of fiber content and specimen shape on residual strength of polypropylene fiber self-compacting concrete exposed to elevated temperatures", J. King Saud Univ., Eng. Sci., 26(1), 33-39. https://doi.org/10.1016/j.jksues.2012.12.002.
  4. Alsanusi, S. and Bentaher, L. (2015), "Prediction of compressive strength of concrete from early age test result using design of experiments (RSM)", Int. J. Civil Environ. Struct. Constr. Arch. Eng., 9(12), 1559-1563.
  5. Avet, F., Snellings, R., Alujas Diaz, A., Ben Haha, M. and Scrivener, K. (2016), "Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays", Cement Concrete Res., 85, 1-11. https://doi.org/10.1016/j.cemconres.2016.02.015.
  6. Awolusi, T.F., Oke, O.L., Akinkurolere, O.O. and Sojobi, A.O. (2019), "Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fiber extracted from waste tires with limestone powder as filler", Case Stud. Constr. Mater., 10, e00212. https://doi.org/10.1016/j.cscm.2018.e00212.
  7. Chan, C.M., Ko, T.M. and Hiraoka, H. (1996), "Polymer surface modification by plasmas and photons", Surf. Sci. Report., 24(1-2), 1-54. https://doi.org/10.1016/0167-5729(96)80003-3.
  8. Chen, G., He, Y., Yang, H., Chen, J.F. and Guo, Y.C. (2014), "Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures", Constr. Build. Mater., 71, 1-15. https://doi.org/10.1016/j.conbuildmat.2014.08.012.
  9. Dhandapani, Y. and Santhanam, M. (2017), "Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance", Cement Concrete Compos., 84, 36-47. https://doi.org/10.1016/j.cemconcomp.2017.08.012.
  10. Dhandapani, Y., Sakthivel, T., Santhanam, M., Gettu, R. and Pillai, R.G. (2018), "Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3)", Cement Concrete Res., 107, 136-151. https://doi.org/10.1016/j.cemconres.2018.02.005.
  11. Dopko, M., Najimi, M., Shafei, B., Wang, X., Taylor, P. and Phares, B.M. (2018), "Flexural performance evaluation of fiber-reinforced concrete incorporating multiple macro-synthetic fibers", Transp. Res. Record: J. Transp. Res. Board, 2672, 1-12. https://doi.org/abs/10.1177/0361198118798986.
  12. Du, Q., Wei, J. and Lv, J. (2017), "Effects of high temperature on mechanical properties of polyvinyl alcohol engineered cementitious composites", Int. J. Civil Eng., 16, 965-972. http://doi.org/10.1007/s40999-017-0245-0.
  13. Felekoglu, B., Felekoglu, K.T., Ranade, R., Zhang, Q. and Li, V.C. (2014), "Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC", Compos. Part B: Eng., 60, 359-370. https://doi.org/10.1016/j.compositesb.2013.12.076.
  14. Felekoglu, B., Tosun, K. and Baradan, B. (2009), "A comparative study on the flexural performance of plasma treated polypropylene fiber reinforced cementitious composites", J. Mater. Proc. Technol., 209(11), 5133-5144. https://doi.org/10.1016/j.jmatprotec.2009.02.015.
  15. Felekoglu, B., Tosun-Felekoglu, K., Keskinates, M. and Godek, E. (2016), "A comparative study on the compatibility of PVA and HTPP fibers with various cementitious matrices under flexural loads", Constr. Build. Mater., 121, 423-428. https://doi.org/10.1016/j.conbuildmat.2016.06.004.
  16. Fiore, V., Scalici, T., Di Bella, G. and Valenza, A.A. (2015), "Review on basalt fiber and its composites", Compos. Part B: Eng., 74, 74-94. https://doi.org/10.1016/j.compositesb.2014.12.034.
  17. Gbozee, M., Zheng, K., He, F. and Zeng X (2018), "The influence of aluminum from metakaolin on chemical binding of chloride ions in hydrated cement pastes", Appl. Clay Sci., 158, 186-194. https://doi.org/10.1016/j.clay.2018.03.038.
  18. Godek, E., Tosun Felekoglu, K., Keskinates, M. and Felekoglu, B. (2017), "Development of flaw tolerant fiber reinforced cementitious composites with calcined kaolin", Appl. Clay Sci., 146, 423-431. https://doi.org/10.1016/j.clay.2017.06.029.
  19. Guo, Y., Zhang, T., Tian, W., Wei, J. and Yu, Q. (2019), "Physically and chemically bound chlorides in hydrated cement pastes: A comparison study of the effects of silica fume and metakaolin", J. Mater. Sci., 54(3), 2152-2169. https://doi.org/2152-2169. 10.1007/s10853-018-2953-5.
  20. Hao, Y., Cheng, L., Hao, H. and Shahin, M.A. (2018), "Enhancing fiber/matrix bonding in polypropylene fiber reinforced cementitious composites by microbially induced calcite precipitation pre-treatment", Cement Concrete Compos., 88, 1-7. https://doi.org/10.1016/j.cemconcomp.2018.01.001.
  21. Huang, B.T., Li, Q.H., Xu, S.L. and Zhou, B. (2019), "Strengthening of reinforced concrete structure using sprayable fiber reinforced cementitious composites with high ductility", Compos. Struct., 220, 940-952. https://doi.org/10.1016/j.compstruct.2019.04.061.
  22. Karimpour, H. and Mazloom, M. (2022), "Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers", Struct. Eng. Mech., 8(2), 575-589. https://doi.org/10.12989/sem.2022.81.5.575.
  23. Karoly, Z., Kalacska, G., Zsidai, L., Mohai, M. and Klebert, S. (2018), "Improvement of adhesion properties of polyamide 6 and polyoxymethylene-copolymer by atmospheric cold plasma treatment" Polym., 10(12), 1380. https://doi.org/10.3390/polym10121380.
  24. Li, Y., Li, W., Deng, D., Wang, K. and Duan, W.H. (2018), "Reinforcement effects of polyvinyl alcohol and polypropylene fibers on flexural behaviors of sulfoaluminate cement matrices", Cement Concrete Compos., 88, 139-149. https://doi.org/10.1016/j.cemconcomp.2018.02.004.
  25. Long, W.J., Wu, Z., Khayat, K.H., Wei, J., Dong, B., Xing, F. and Zhang, J. (2022), "Design, dynamic performance and ecological efficiency of fiber-reinforced mortars with different binder systems: Ordinary Portland cement, limestone calcined clay cement and alkali-activated slag", J. Clean. Prod., 337, 130478. https://doi.org/10.1016/j.jclepro.2022.130478.
  26. Longhi, M.A., Rodriguez, E.D., Walkley, B., Zhang, Z. and Kirchheim, A.P. (2020), "Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation", Compos. Part B: Eng., 182, 107671. https://doi.org/10.1016/j.compositesb.2019.107671.
  27. Maraghechi, H., Avet, F., Wong, H., Kamyab, H. and Scrivener, K. (2018), "Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport", Mater. Struct., 51(5), 1-17. https://doi.org/10.1617/s11527-018-1255-3.
  28. Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers", Adv. Mater. Res., 8(2), 137-154. http://doi.org/10.12989/amr.2019.8.2.137.
  29. Mazloom, M. and Mirzamohammadi, S. (2021a), "Fracture of fiber-reinforced cementitious composites after exposure to elevated temperatures", Mag. Concrete Res., 73(14), 701-713. https://doi.org/10.1680/jmacr.19.00401.
  30. Mazloom, M. and Mirzamohammadi, S. (2021b), "Computing the fracture energy of fiber reinforced cementitious composites using response surface methodology", Adv. Comput. Des., 6(3), 225-239. http://doi.org/10.12989/acd.2021.6.3.225.
  31. Mirzamohammadi, S. and Mazloom, M. (2021), "Monitoring the required energy for the crack propagation of fiber-reinforced cementitious composite", Struct. Monit. Mainten., 8(3), 279-294. https://doi.org/10.12989/smm.2021.8.3.279.
  32. Mirzamohammadi, S. and Soltani, M. (2023), "Development of a green high-performance fiber-reinforced cementitious composite using local ingredients", J. Mater. Civil Eng., 36(4), 04024048. https://doi.org/10.1061/jmcee7/mteng-16362.
  33. Mohammed, B.S., Khed, V.C. and FadhilNuruddin, M. (2018), "Rubbercrete mixture optimization using response surface methodology", J. Clean. Prod., 171, 1605-1621. https://doi.org/10.1016/j.jclepro.2017.10.102.
  34. Muzenda, T.R., Hou, P., Kawashima, S., Sui, T. and Cheng, X. (2020), "The role of limestone and calcined clay on the rheological properties of LC3", Cement Concrete Compos., 107, 103516. https://doi.org/10.1016/j.cemconcomp.2020.103516.
  35. Ozawa, M. and Morimoto, H. (2014), "Effect of various fibers on high-temperature spalling in high-performance concrete", Constr. Build. Mater., 71, 83-92. https://doi.org/10.1016/j.conbuildmat.2014.07.068.
  36. Ozbay, E., Karahan, O., Lachemi, M., Hossain, K.M.A. and Atis, C.D. (2012), "Investigation of properties of engineered cementitious composites incorporating high volumes of fly ash and metakaolin", ACI Mater. J., 109, 565-571.
  37. Panda, B., Ruan, S., Unluer, C. and Tan, M.J. (2020), "Investigation of the properties of alkali-activated slag mixes involving the use of nano clay and nucleation seeds for 3D printing", Compos. Part B: Eng., 186, 107826. https://doi.org/10.1016/j.compositesb.2020.107826.
  38. Rambo, D.A.S., Blanco, A., de Figueiredo, A.D., dos Santos, E.R.F., Toledo Filho, R.D. and Gomes, O.D.F.M. (2018), "Study of temperature effect on macro-synthetic fiber reinforced concretes by means of Barcelona tests: An approach focused on tunnels assessment", Constr. Build. Mater., 158, 443-453. https://doi.org/10.1016/j.conbuildmat.2017.10.046.
  39. Ramezanianpour, A.A., Esmaeili, M., Ghahari, S. and Najafi, M.H. (2013), "Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers", Constr. Build. Mater., 44, 411-418. https://doi.org/10.1016/j.conbuildmat.2013.02.076.
  40. Rios, J.D., Cifuentes, H., Leiva, C., Garcia, C. and Maria, D. (2018), "Behavior of high-strength polypropylene fiber-reinforced self-compacting concrete exposed to high temperatures", J. Mater. Civil Eng., 30(11), 04018271. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002491.
  41. Ritter, A. and Munoz-Carpena, R. (2013), "Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments", J. Hydrol., 480, 33-45. https://doi.org/10.1016/j.jhydrol.2012.12.004.
  42. Rostami, R., Zarrebini, M., Mandegari, M., Sanginabadi, K., Mostofinejad, D., Abtahi, S.M. and Rostami, R. (2019), "The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties", Cement Concrete Compos., 97, 118-124. https://doi.org/10.1016/j.cemconcomp.2018.12.012.
  43. Ruano, G., Isla, F., Luccioni, B., Zerbino, R. and Giaccio, G. (2018), "Steel fibers pull-out after exposure to high temperatures and its contribution to the residual mechanical behavior of high strength concrete", Constr. Build. Mater., 163, 571-585. https://doi.org/10.1016/j.conbuildmat.2017.12.129.
  44. Seyreka, Y. and Felekoglub, K.T. (2022), "Selection of proper matrix with plasma-treated HTPP fiber reinforced cementitious composites in terms of flexural toughness", J. Build. Eng., 45, 103632. https://doi.org/10.1016/j.jobe.2021.103632.
  45. Shi, Z., Ferreiro, S., Lothenbach, B., Geiker, M.R., Kunther, W., Kaufmann, J., Herfort, D. and Skibsted, J. (2019), "Sulfate resistance of calcined clay-Limestone-Portland cements", Cement Concrete Res., 116, 238-251. https://doi.org/10.1016/j.cemconres.2018.11.003.
  46. Siad, H., Alyousif, A., Keskin, O.K., Keskin, S.B., Lachemi, M., Sahmaran, M. and Hossain, K.M.A. (2015), "Influence of limestone powder on mechanical, physical and self-healing behavior of engineered cementitious composites", Constr. Build. Mater., 99, 1-10. https://doi.org/10.1016/j.conbuildmat.2015.09.007.
  47. Sui, S., Georget, F., Maraghechi, H., Sun, W. and Scrivener, K. (2019), "Towards a generic approach to durability: Factors affecting chloride transport in binary and ternary cementitious materials", Cement Concrete Res., 124, 105783. https://doi.org/10.1016/j.cemconres.2019.105783.
  48. Takeda, T., Yasuoka, T., Hoshi, H., Sugimoto, S. and Iwahori, Y. (2019), "Effectiveness of flame-based surface treatment for adhesive bonding of carbon fiber reinforced epoxy matrix composites", Compos. Part A: Appl. Sci. Manuf., 119, 30-37. https://doi.org/10.1016/j.compositesa.2019.01.013.
  49. Trejbal, J., Horova, T. and Prosek, Z. (2017), "Pullout behavior of oxygen plasma treated polymer fibers from cement matrix", Acta Polytechnica CTU Proc., 13, 130. https://doi.org/10.14311/app.2017.13.0130.
  50. Trejbal, J., Nezerka, V., Somr, M., Fladr, J., Potocky, S., Artemenko, A. and Tesarek, P. (2018), "Deterioration of bonding capacity of plasma-treated polymer fiber reinforcement", Cement Concrete Compos., 89, 205-215. https://doi.org/10.1016/j.cemconcomp.2018.03.010.
  51. Turk, K. and Demirhan, S. (2017), "Effect of limestone powder on the rheological, mechanical and durability properties of ECC", Eur. J. Environ. Civil Eng., 21, 1151-1170. https://doi.org/10.1080/19648189.2016.1150902.
  52. van Zijl, G.P. and de Beer, L. (2018), "Sprayed strain-hardening cement-based composite overlay for shear strengthening of unreinforced load-bearing masonry", Adv. Struct. Eng., 22(5), 1121-1135. https://doi.org/10.1177/1369433218807686.
  53. Wei, J., Farzadnia, N., Nimoh, A.A. and Khayat, K.H. (2023), "Evaluation of residual flexural behavior of corroded fiber-reinforced super workable concrete beams", Cement Concrete Compos., 144, 105278. https://doi.org/10.1016/j.cemconcomp.2023.105278.
  54. Wei, J., Long, W.J., Khayat, K.H., Dong, B., Mei, L. and Xing, F. (2022), "Dynamical properties of environmental high-performance composites with calcined clay", J. Clean. Prod., 335, 130226. https://doi.org/10.1016/j.jclepro.2021.130226.
  55. Wu, H.C. and Li, V.C. (1999), "Fiber/cement interface tailoring with plasma treatment", Cement Concrete Compos., 21(3), 205-212. https://doi.org/10.1016/S0958-9465(98)00053-5.
  56. Yavuz, O. and Saka, C. (2013), "Surface modification with cold plasma application on kaolin and its effects on the adsorption of methylene blue", Appl. Clay Sci., 85(1), 96-102. https://doi.org/10.1016/j.clay.2013.09.011.
  57. Yu, J., Lin, J., Zhang, Z. and Li, V.C. (2015), "Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures", Constr. Build. Mater., 99, 82-89. http://doi.org/10.1016/j.conbuildmat.2015.09.002.
  58. Yu, K., Yu, J., Dai, J., Lu, J. and Shah, S. (2018), "Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers", Constr. Build. Mater., 158, 217-227. https://doi.org/10.1016/j.conbuildmat.2017.10.040.
  59. Yu, K.Q., Lu, Z.D., Dai, J.G. and Shah, S.P. (2020), "Direct tensile properties and stress-strain model of UHP-ECC", J. Mater. Civil Eng., 32(1), 04019334. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002975.
  60. Zhang, D., Jaworska, B., Zhu, H., Dahlquist, K. and Li, V.C. (2020), "Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3)", Cement Concrete Compos., 114, 103766. https://doi.org/10.1016/j.cemconcomp.2020.103766.
  61. Zheng, Y., Zhang, L.F. and Xia, L.P. (2018), "Investigation of the behavior of flexible and ductile ECC link slab reinforced with FRP", Constr. Build. Mater., 166, 694-711. https://doi.org/10.1016/j.conbuildmat.2018.01.188.
  62. Zhou, J., Qian, S., Sierra Beltran, M.G., Ye, G., van Breugel, K. and Li, V.C. (2010), "Development of engineered cementitious composites with limestone powder and blast furnace slag", Mater. Struct., 43, 803-814. https://doi.org/10.1617/s11527-009-9549-0.
  63. Zhu, H., Zhang, D., Wang, T., Wu, H. and Li, V.C. (2020), "Mechanical and self-healing behavior of low carbon engineered cementitious composites reinforced with PP-fibers", Constr. Build. Mater., 259, 119805. https://doi.org/10.1016/j.conbuildmat.2020.119805.
  64. Zhu, He., Yu, K. and Li, V.C. (2021), "Sprayable engineered cementitious composites (ECC) using calcined clay limestone cement (LC3) and PP fiber", Cement Concrete Compos., 115, 103868. https://doi.org/10.1016/j.cemconcomp.2020.103868.