DOI QR코드

DOI QR Code

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads

교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가

  • 이용훈 (단국대학교 건축공학과) ;
  • 이상현 (단국대학교 건축학부) ;
  • 허무원 (단국대학교 부설 리모델링연구소)
  • Received : 2023.12.22
  • Accepted : 2024.01.11
  • Published : 2024.02.28

Abstract

In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.

본 연구에서는 진동원으로서 교통하중(고속열차)에 대해 수직 방진기능과 수평 면진기능을 조합한 3차원 하이브리드 면진시스템(Tridimensional Hybrid Isolation System, THIS)을 제안하였고, 고속열차 진동에 대한 THIS의 수직 진동 사용성 개선 효과를 해석적으로 평가하였다. 해석을 위하여 실제 16층의 공동주택을 상용구조해석프로그램의 고유치해석과 침실 바닥판에 대한 펄스 응답 분석을 통해 주요 진동모드를 식별하였고, 이 주요 진동 모드를 가지고 바닥판의 수평과 수직, 회전 자유도를 가지는 16개 층의 골조 모델을 제작하였다. 해석방법은 실제 고속철도가 통행할 때 철로와 인접한 구조물에서 계측한 가속도를 진동원으로 적용하고 THIS의 강성과 감쇠비를 변수로 상태-공간방정식을 이용하여 동적해석을 수행하였다. 그 결과, 기존 구조물의 수직 고유주기 대비 THIS의 수직 주기가 커질수록 층별 바닥판 응답이 저감되기 시작하는 임계 주기비가 다르고, 주기가 5배 이상(0.006 이하의 강성비)일 때 모든 바닥판의 가속도 수준이 비면진 대비 약 70% 이하로 감소하였다. 또한, THIS의 감쇠비에 대한 응답 제어에 미치는 영향이 매우 적은 것으로 나타났다. 마지막으로 THIS에 대한 수직 진동 사용성 개선 효과를 확인하기 위하여 비면진 구조물과 0.006의 강성비와 0.03의 감쇠비를 가지는 THIS가 적용된 구조물에 대하여 1층과 16층 바닥판 가속도를 AIJ, SCI, AISC 진동 사용성 기준에 따라 평가하였고, 기존에 주거지 사용성 기준을 만족하지 못한 데 반해, THIS 적용 후 주거지 사용성 기준을 모두 만족하는 것을 확인하였다.

Keywords

Acknowledgement

본 논문은 한국연구재단 대학중점연구소지원사업(NRF-2018R1A6A1A07025819)과 창의도전연구기반지원사업(NRF-2022R1I1A1A0106389911)에 의한 결과이며 이에 감사드립니다

References

  1. AIJES-V001-2004:Guildlines of the valuation of habitability to building vibration, Architectural Institute of Japan(AIJ) (in Japanese), 2004.
  2. Chopra, A. K. (2016), Dynamics of Structures 5th edn., Pearson
  3. Elias, P., Villot, M. (2012), Review of existing standards, regulations and guidelines, as well as laboratory and field studies concerning human exposure to vibration, Railway-Induced Vibration Abatement Solutions(RIVAS) Collaborative project, WP1(03).
  4. ESCO RTS, http://www.enrtech.co.kr.
  5. Ham, K. W., Lee, K. J., and Suh, Y. P. (2006), Experimental Study on Vertical Reduction Effectiveness of Main Control Room of Npp using 3-Dimensional Isolation System, Spring conference journal of EESK, 417-423.
  6. Hur, M. W., Lee, Y. H., and Lee, S. H. (2019), The Optimal Isolation Period of Vertically Story-added Remodeling Apartment Building with Seismic Isolation System, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(3), 65-74.
  7. Hur, M. W., Yoon, J. H., and Park, T. W. (2017), Seismic Performance Evaluation of Non-seismic designed Low-rise Building Retrofitted by Isolation device, Conference Journal of Korea Concrete Institute, pp. 323-324.
  8. Hwang, K. T. (2018), Technical Trends of RC Buildings Applied with Seismic Isolation Systems, Magazine of the Korea Concrete Institute, 30(3), 44-52.
  9. ISO 2631-1 (1997), : Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration. Part 1: General requirements.
  10. ISO 2631-2 (2003), Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration. Part 2: Vibration in buildings (1 Hz to 80 Hz).
  11. Mun, J. H., Im, C. R., Wang, H. R., and Yang, K. H. (2021), Load-Displacement Relationship of Passive Vibration Units Composed with a Spring and Vibration-Proof Rubbers, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(6), 226-234.
  12. Junji, S., Ryoichiro, M., Shinsuke, O., Yasuo, O., Kazuhiko, I., and Kenji, T. (2005), Research on 3-D Base Isolation System Applied to New Power Reactor 3-D Seismic Isolation Device with Rolling Seal Type Air Spring: Part 2, IASMiRT.
  13. Khiavi, M. P., Ghorbani, M. A., and Rahmat, A. G. (2020), Seismic Optimization of Concrete Gravity Dams Using a Rubber Damper, International Journal of Acoustics and Vibration, 25(3), 425-435. https://doi.org/10.20855/ijav.2020.25.31674
  14. Kim, H. S., Kim, S. G., and Kang, J. W. (2018), Seismic Response Evaluation of Mid-Story Isolation System According to the Change of Characteristics of the Seismic Isolation Device, Journal of Korean Association for Spatial Structures, 18(1), 109-116. https://doi.org/10.9712/KASS.2018.18.1.109
  15. Kim, J. S., Jo, M. J., and Kim, S. H. (2016), A Study on Evaluation of Floor Vibration for steel Frame Modular Housing, Journal of the Korea Institute for Structural Maintenamnce and Inspection, 20(1), 104-111. https://doi.org/10.11112/jksmi.2016.20.1.104
  16. Kim, K. Y., Lee, Y. R., Kim, H. S., and Kang, J. W. (2017), Evaluation of High-Rise Buildings Considering Installation Story of the Mid-Story Isolation System, Journal of Korean Association for Spatial Structures, 17(4), 85-92. https://doi.org/10.9712/KASS.2017.17.4.085
  17. Riccardo, C., Naurizio, I., Massimo, M., Bruno, S., and Paolo, C. (2004), The Use of An Innovative 3D Isolation System for Seismic and Ambient Vibration to Protect The Roman Ship Excavated at Ercolano, Third European Conference on Structural Control, Vienna.
  18. SCI-P354 (2009), Design of Floors for Vibration:A New Approach (revised edition, February 2009).
  19. Seito, O., Kyotada, N., and Michiaki, S. M. (2003), Development of 3D Seismic Isolator using Metallic Bellows, Transactions SMiRT 17, Prague.
  20. Vibration regulation law (Law no. 64 of 1976, latest Amendment by Law no. 75 of 1995), (1995), Ministry of the Environment of Japan (in Japanese).
  21. Wei, L. S., and Zhou F. L. (2008), Vibration and Seismic Isolation Design for Buildings on Subway Platform, 14th World Conference on Earthquake Engineering, Beijing, China.
  22. Wilson, G. P. (1998), Vibration isolation design for Benaroya Hall, The Journal of the Acoustical Society of America, 103(5), 2906-2906. https://doi.org/10.1121/1.422056
  23. Yun, C. J., Lee, S. U., and Jo, K. W. (2006), Analysis KTX wheel aged deterioration using Frequency Response Function. In Proceedings of the Korean Society for Noise and Vibration Engineering Conference (pp. 1453-1458). The Korean Society for Noise and Vibration Engineering.