DOI QR코드

DOI QR Code

Evaluation of regional Eco-Efficiency and its influencing factors in China: Based on Super-SBM and Tobit model

Super-SBM 및 Tobit 모델을 기반으로 한 중국지역 환경효율성 평가 및 영향요인 연구

  • Yinjin Zeng (Dept. of Economics, Trade and Management, Yibin Vocational and Technical College) ;
  • Jae yeon Sim (Dept. of Management, Sehan University)
  • Received : 2023.12.13
  • Accepted : 2024.01.25
  • Published : 2024.01.31

Abstract

In this study, 31 provincial-level administrative regions in China from 2011 to 2021 were taken as the research objects, and the super-SBM model was used to measure the regional eco-efficiency with capital, labor, land and resource input as input variables, GDP and green coverage as the desirable outputs, and wastewater, waste gas and solid waste emissions as the undesired outputs. Tobit regression was used to analyze the effects of external environmental factors on eco-efficiency. The results showed that the average level of eco-efficiency in China was low, and the eco-efficiency in the eastern region was higher than that in other regions, and there were great differences in the western, northeast and central regions.

본 연구에서는 2011년부터 2021년까지 중국의 31개 성(省)급 행정구역을 연구 대상으로 삼았으며, 자본, 노동, 토지 및 자원 투입을 투입 변수로, GDP 및 녹색 범위를 예상 산출량으로, 폐수, 폐가스 및 고형 폐기물 등의 배출을 바람직하지 않은 산출물로 하고, 지역 환경효율성을 측정하기 위해 super-SBM 모형을 이용하였다. 외부 환경요인이 환경효율성에 미치는 영향을 분석하기 위해 토빗 회귀분석을 이용하였다. 그 결과 중국의 평균 환경효율성 수준은 낮았고 동부지역의 환경효율성은 다른 지역보다 높았으며 서부, 북동부 및 중부 지역에서 큰 차이가 있었다.

Keywords

Acknowledgement

This Paper was supported by the Sehan University Fund in 2024.

References

  1. Stefan Schaltegger, Andreas Sturm. (1990). Okologische Rationalitat: Ansatzpunkte zur Ausgestaltung von okologieorientierten Managementinstrumenten [J]. Die Unternehmung, 44(4), 273-290. http://www.jstor.org/stable/24180467
  2. Jacqueline Cramer, Herman van Lochem. (2001). The practical use of the 'eco-efficiency' concept in industry: The caseof Akzo Nobel [J]. The Journal of Sustainable Product Design, 1(3), 171-180. https://doi.org/10.1023/A:1020507309005
  3. Huppes G, Ishikawa M. (2005). Eco-efficiency and Its xs Terminology [J]. Journal of Industrial Ecology, 9(4), 43-46. https://doi.org/10.1162/108819805775247891
  4. T Hahn, F Figge, A Liesen, R Barkemeyer. (2010). Opportunity cost based analysis of corporate ecoefficiency: A methodology and its application to the CO2-efficiency of German companies [J]. Journal of Environmental Management, 91(10), 1997-2007. https://doi.org/10.1016/j.jenvman.2010.05.004
  5. Ken'ichi Matsumoto, & Yueyang Chen. (2021). Industrial eco-efficiency and its determinants in China: A two-stage approach [J]. Journal of Ecological Indicators, 135: 890-904. https://doi.org/10.1016/j.ecolind.2021.108072
  6. L Aldieri, B Bruno, CP Vinci. (2019). Does environmental innovation make us happy? An empirical investigation [J]. Socio-Economic Planning Sciences, 67: 166-172. https://doi.org/10.1016/j.seps.2018.10.008
  7. Mickwitz P, Melanen M, Rosenstrom U, Seppala J. (2006). Regional eco-efficiency indicators - A participatory approach [J]. Journal of Cleaner Production, 14(18): 1603-1611. https://doi.org/10.1016/j.jclepro.2005.05.025
  8. Caneghem JV, Block C, Cramm P, Mortier R, & Vandecasteele C. (2010). Improving eco-efficiency in the steel industry: The Arcelor Mittal Gent case [J]. Journal of Cleaner Production, 18(8): 807-814. https://doi.org/10.1016/j.jclepro.2009.12.016
  9. Dyckhoff H, Allen K.(2001). Measuring ecological efficiency with data envelopment analysis (DEA) [J]. European Journal of Operational Research, 132(2): 312-325. https://doi.org/10.1016/S0377-2217(00)00154-5
  10. Gomez-Calvet R, Conesa D, Gomez-Calvet A R, Tortosa-Ausina E. (2016). On the dynamics of eco-efficiency performance in the European Union [J]. Computers & Operations Research, 66: 336- 350. https://doi.org/10.1016/j.cor.2015.07.018
  11. Izhar Hussain Shah, Liang Dong, Hung-Suck Park (2020). Tracking urban sustainability transition: An eco-efficiency analysis on eco-industrial development in Ulsan, Korea [J]. Journal of Cleaner Production, 2020, 262. https://doi.org/10.1016/j.jclepro.2020.121286
  12. Mirmozaffari M, Yazdani M, Boskabadi A, et al. (2020). A novel machine learning approach combined with optimization models for eco-efficiency evaluation [J]. Applied Sciences, 10(15): 5210. https://doi.org/10.3390/app10155210
  13. Moutinho V, Madaleno M.(2021). A two-stage DEA model to evaluate the technical eco-efficiency indicator in the EU countries [J]. International Journal of Environmental Research and Public Health, 18(6): 3038. https://doi.org/10.3390/ijerph18063038
  14. Rene Van Berkel.(2007). Eco-efficiency in the Australian minerals processing sector [J]. Journal of Cleaner Production, 15: 772-781. https://doi.org/10.1016/j.jclepro.2006.06.017
  15. Caiado RGG, de Freitas Dias R, Mattos LV, et al. (2017). Towards sustainable development through the perspective of eco-efficiency-A systematic literature review [J]. Journal of Cleaner Production, 165: 890-904. https://doi.org/10.1016/j.jclepro.2017.07.166
  16. Ibanez Fores V, Coutinho Nobrega C, Guinot Meneu M, Bovea MD. (2021). Achieving waste recovery goals in the medium/long term: Eco-efficiency analysis in a Brazilian city by using the LCA approach [J]. Journal of Environmental Management, 298. https://doi.org/10.1016/j.jenvman.2021.113457
  17. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units [J]. European Journal of Operational Research, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8
  18. Sun Zhenqing, Lu Sisi, & Liu Baoliu (2021). Research on provincial regional eco-efficiency evaluation and improvement path: Based on super-efficient SBM model and tobit regression [J]. Ecological Economy, 37(1): 124-129.
  19. Tone K. (2001). A salcks-based measure of efficiency in data envelopment analysis [J]. European Journal of Operational Research, 130(3): 498-509. https://doi.org/10.1016/S0377-2217(99)00407-5
  20. Kim BC (2015). An analysis efficiency change and efficiency stability of the community credit cooperative by using non-radial SBM model and DEA window model [J]. Korean Nonprofit Review, 17(2): 23-36.
  21. H Jung, K Lee (2022). Efficiency analysis of security management system of affiliates of conglomerate using DEA-SBM model [J]. Journal of the Korea Institute of Information Security & Cryptology, 32(2): 341-353. https://doi.org/10.13089/JKIISC.2022.32.2.341
  22. Park SC, Lee JH (2016). Automotive supply chain efficiency evaluation and benchmark based on DEA-SBM and EM clustering analysis [J]. Corporate Management Research, 23(1): 269-289.
  23. Shi HM, Jeong HY (2019). Research on the efficiency of Chinese cultural industry based on Super-SBM-DEA Model [J]. Chinese Culture Studies, 43: 335-361. http://doi.org/10.18212/cccs.2019..43.015
  24. JM Park, JW Jeon, GT Yeo (2015). A study on efficiency of resident logistics companies in port hinterland using Super-SBM [J]. Journal of Korean Navigation and Port Society, 39(6): 507-514. https://doi.org/10.5394/KINPR.2015.39.6.507
  25. Zhao J, Dang G, Tang X (2022). Spatial-temporal differences and influencing factors of agricultural eco-efficiency in China based on SBM-tobit model [J]. Journal of Southwest Forestry University, 6(3): 10-18.
  26. Ma X, Li Y, Wang C, Yu Y. (2018). Ecological efficiency in the development of circular economy of China under hard constraints based on an optimal super efficiency SBM-Malmquist-Tobit model [J]. China Environmental Science, 38(9): 3584-3593.
  27. J. Huang, X. Yang, G. Cheng, S. Wang (2014). A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China [J]. Journal of Cleaner Production, 67: 228-238. http://dx.doi.org/10.1016/j.jclepro.2013.12.003
  28. Zeng Q, Li Y, Zhou Z. (2021). Evaluation of ecological efficiency in Jiangsu province based on Super-SBM model [J]. Hubei Agricultural Sciences, 60(23): 191-195.
  29. Chen, T. (2022). Research on evaluation and influencing factors of China's provincial eco-efficiency [D]. China: Yanshan University.
  30. Yang, Y. (2021). Research on the impact of environmental regulation on regional eco-efficiency in China [D]. China: Lanzhou University.
  31. Q. Liu, S. Wang, B. Li, W. Zhang (2020). Dynamics, differences, influencing factors of eco-efficiency in China: A spatiotemporal perspective analysis [J]. Journal of Environmental Management, 264. https://doi.org/10.1016/j.jenvman.2020.110442
  32. C. Zhou, C. Shi, S. Wang, G. Zhang (2018). Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models [J]. Ecological Indicators, 86: 67-80. https://doi.org/10.1016/j.ecolind.2017.12.011
  33. D Xue, L Yue, F Ahmad, M Umar Draz, A Ali Chandio (2021). Urban eco-efficiency and its influencing factors in Western China: Fresh evidence from Chinese cities based on the US-SBM [J]. Ecological Indicators, 127. https://doi.org/10.1016/j.ecolind.2021.107784
  34. W Zhu, L Xu, L Tang, X Xiang (2019). Eco-efficiency of the Western Taiwan Straits Economic Zone: An evaluation based on a novel eco-efficiency model and empirical analysis of influencing factors [J]. Journal of Cleaner Production, 234: 638-652. https://doi.org/10.1016/j.jclepro.2019.06.157
  35. Y Ren, C Fang, G Li (2020). Spatiotemporal characteristics and influential factors of eco-efficiency in Chinese prefecture-level cities: A spatial panel econometric analysis [J]. Journal of Cleaner Production, 260. https://doi.org/10.1016/j.jclepro.2020.120787