DOI QR코드

DOI QR Code

Process Optimization for the Industrialization of Transparent Conducting Film

투명 전도막의 산업화를 위한 공정 최적화

  • 남현빈 (순천향대학교 전자재료소자장비융합공학과) ;
  • 최요석 ((주)한엘 연구소) ;
  • 김인수 ((주)한엘 연구소) ;
  • 김경준 ((주)한엘 연구소) ;
  • 박성수 ((주)한엘 연구소) ;
  • 이자현 (순천향대학교 융합바이오화학공학과)
  • Received : 2024.01.12
  • Accepted : 2024.01.23
  • Published : 2024.01.31

Abstract

In the rapidly advancing information society, electronic devices, including smartphones and tablets, are increasingly digitized and equipped with high-performance features such as flexible displays. This study focused on optimizing the manufacturing process for Transparent Conductive Films (TCF) by using the cost-effective conductive polymer PEDOT and transparent substrate PET as alternatives to expensive materials in flexible display technology. The variables considered are production speed (m/min), coating maximum temperature (℃), and PEDOT supply speed (rpm), with surface resistivity (Ω/□) as the response parameter, using Response Surface Methodology (RSM). Optimization results indicate the ideal conditions for production: a speed of 22.16 m/min, coating temperature of 125.28℃, and PEDOT supply at 522.79 rpm. Statistical analysis validates the reliability of the results (F value: 18.37, P-value: < 0.0001, R2: 0.9430). Under optimal conditions, the predicted surface resistivity is 145.75 Ω/□, closely aligned with the experimental value of 142.97 Ω/□. Applying these findings to mass production processes is expected to enhance production yields and decrease defect rates compared to current practices. This research provides valuable insights for the advancement of flexible display manufacturing.

급변하는 정보화 사회에서는 스마트폰와 태블릿을 비롯한 다양한 전자기기가 더욱 디지털화되고 플렉시블 디스플레이와 같은 고성능을 갖추며 발전하고 있다. 본 연구에서는 경제적 절감을 위한 플렉시블 디스플레이의 고가 소재를 대체하는 전도성 고분자인 PEDOT과 투명 기판인 PET를 적용한 TCF의 제조 공정 최적화를 진행하였다. PEDOT 코팅을 이용한 TCF 생산 공정에서 주요 변수인 생산 속도 (m/min), 코팅 최고 온도 (℃), PEDOT 공급 속도 (rpm)에 따른 표면 저항률 (Ω/□)을 반응표면분석법을 사용하여 최적화하였다. 결과적으로, 생산 속도 22.16 m/min, 코팅 최고 온도 125.28 ℃, PEDOT 공급 속도 522.79 rpm으로 최적 조건을 도출했다. F 값은 18.37, P-값은 < 0.0001, 결정계수(R2)는 0.9430으로 결과의 신뢰성이 높음을 확인했다. 최적 조건에서의 예측값은 145.75 Ω/□이며, 실험값은 142.97 Ω/□이었다. 이 연구 결과를 기반으로 대량 생산 공정에 적용하면 기존의 생산 수율 보다 높은 수율을 달성하고 불량 발생률을 줄일 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 조기취업형 계약학과 선도대학 육성사업과 순천향대학교 학술연구비 지원을 받아 수행하였음

References

  1. Saha, H. N., Mandal, A., &Sinha, A. (2017, January). Recent trends in the Internet of Things. In 2017 IEEE 7th annual computing and communication workshop and conference (CCWC) (pp. 1-4). IEEE.
  2. Attaran, M. (2023). The impact of 5G on the evolution of intelligent automation and industry digitization. Journal of ambient intelligence and humanized computing, 14(5), 5977-5993. https://doi.org/10.1007/s12652-020-02521-x
  3. Ni, T., Schmidt, G. S., Staadt, O. G., Livingston, M. A., Ball, R., & May, R. (2006, March). A survey of large high-resolution display technologies, techniques, and applications. In IEEE Virtual Reality Conference (VR 2006) (pp. 223-236). IEEE.
  4. Wang, C. H., & Liu, C. C. (2022). Market competition, technology substitution, and collaborative forecasting for smartphone panels and supplier revenues. Computers & Industrial Engineering, 169, 108295.
  5. Rosato, D. V. (2011). Plastics end use applications. Springer Science & Business Media.
  6. Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y., & Shen, G. (2014). Flexible energy storage devices: design consideration and recent progress. Advanced materials, 26(28), 4763-4782. https://doi.org/10.1002/adma.201400910
  7. Koo, J. H., Kim, D. C., Shim, H. J., Kim, T. H., & Kim, D. H. (2018). Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Advanced Functional Materials, 28(35), 1801834.
  8. Zhu, H., Shin, E. S., Liu, A., Ji, D., Xu, Y., & Noh, Y. Y. (2020). Printable semiconductors for backplane TFTs of flexible OLED displays. Advanced Functional Materials, 30(20), 1904588.
  9. Wang, T., Lu, K., Xu, Z., Lin, Z., Ning, H., Qiu, T., ... & Peng, J. (2021). Recent developments in flexible transparent electrode. Crystals, 11(5), 511.
  10. Hao, B., Mu, L., Ma, Q., Yang, S., & Ma, P. C. (2018). Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks. Composites Science and Technology, 163, 162-170. https://doi.org/10.1016/j.compscitech.2018.05.017
  11. Teo, M. Y., Kim, N., Kee, S., Kim, B. S., Kim, G., Hong, S., ... & Lee, K. (2017). Highly stretchable and highly conductive PEDOT: PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS applied materials & interfaces, 9(1), 819-826. https://doi.org/10.1021/acsami.6b11988
  12. Naghdi, S., Rhee, K. Y., Hui, D., & Park, S. J. (2018). A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications. Coatings, 8(8), 278.
  13. Betz, U., Olsson, M. K., Marthy, J., Escola, M. F., & Atamny, F. (2006). Thin films engineering of indium tin oxide: Large area flat panel displays application. Surface and Coatings Technology, 200(20-21), 5751-5759. https://doi.org/10.1016/j.surfcoat.2005.08.144
  14. Yang, S., Ng, E., & Lu, N. (2015). Indium Tin Oxide (ITO) serpentine ribbons on soft substrates stretched beyond 100%. Extreme Mechanics Letters, 2, 37-45. https://doi.org/10.1016/j.eml.2015.01.010
  15. Cho, S. I., & Lee, S. B. (2008). Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Accounts of chemical research, 41(6), 699-707. https://doi.org/10.1021/ar7002094
  16. Castagnola, V., Bayon, C., Descamps, E., & Bergaud, C. (2014). Morphology and conductivity of PEDOT layers produced by different electrochemical routes. Synthetic metals, 189, 7-16. https://doi.org/10.1016/j.synthmet.2013.12.013
  17. Choi, M. C., Kim, Y., & Ha, C. S. (2008). Polymers for flexible displays: From material selection to device applications. Progress in polymer science, 33(6), 581-630. https://doi.org/10.1016/j.progpolymsci.2007.11.004
  18. Moon, J. S., Park, J. H., Lee, T. Y., Kim, Y. W., Yoo, J. B., Park, C. Y., ... & Jin, K. W. (2005). Transparent conductive film based on carbon nanotubes and PEDOT composites. Diamond and Related Materials, 14(11-12), 1882-1887.. https://doi.org/10.1016/j.diamond.2005.07.015
  19. Yan, H., Yumoto, T., Cheng, W. Z., Zhang, P., Mei, Y. A., Zhang, K., & Okuzaki, H. (2013). Thin films of PEDOT/PSS bar-coated on transparent plastic substrates. Chemistry Letters, 42(11), 1352-1354. https://doi.org/10.1246/cl.130652
  20. Elschner, A., & Lovenich, W. (2011). Solution-deposited PEDOT for transparent conductive applications. MRS bulletin, 36(10), 794-798. https://doi.org/10.1557/mrs.2011.232
  21. Lee, J. H., Lee, D. Y., Lee, S. K., Kim, H. R., Chun, Y., Yoo, H. Y., ... & Kim, S. W. (2021). Development of 2, 3-Butanediol Production Process from Klebsiella aerogenes ATCC 29007 Using Extracted Sugars of Chlorella pyrenoidosa and Biodiesel-Derived Crude Glycerol. Processes, 9(3), 517.
  22. Fraser, I. S., Motta, M. S., Schmidt, R. K., & Windle, A. H. (2010). Continuous production of flexible carbon nanotube-based transparent conductive films. Science and Technology of Advanced Materials.
  23. Li, J., Zhao, X. L., & Yan, H. (2016, May). Highly Conductive and Transparent PEDOT/PSS Thin Films with Large Area Prepared by Bar-Coating Method. In Materials Science Forum (Vol. 852, pp. 1123-1131). Trans Tech Publications Ltd.
  24. Dijk, G., Ruigrok, H. J., & O'Connor, R. P. (2020). Influence of PEDOT: PSS coating thickness on the performance of stimulation electrodes. Advanced Materials Interfaces, 7(16), 2000675.
  25. Costa, E. L., Soares, F. B., Lourenco, S. A., Muniz, E. C., & Cava, C. E. (2021). Design experiment (parameters) applied to PEDOT: PSS/AgNW composite doped with EG for transparent conductive films. Journal of Molecular Liquids, 329, 115516.
  26. Nguyen, N. K., & Miller, A. J. (1992). A review of some exchange algorithms for constructing discrete D-optimal designs. Computational Statistics & Data Analysis, 14(4), 489-498. https://doi.org/10.1016/0167-9473(92)90064-M
  27. Mohammed, A., Bissoon, R., Bajnath, E., Mohammed, K., Lee, T., Bissram, M., ... & Ward, K. (2018). Multistage extraction and purification of waste Sargassum natans to produce sodium alginate: An optimization approach. Carbohydrate polymers, 198, 109-118. https://doi.org/10.1016/j.carbpol.2018.06.067
  28. Liudvinaviciute, D., Rutkaite, R., Bendoraitiene, J., Klimaviciute, R., & Dagys, L. (2020). Formation and characteristics of alginate and anthocyanin complexes. International Journal of Biological Macromolecules, 164, 726-734. https://doi.org/10.1016/j.ijbiomac.2020.07.157