DOI QR코드

DOI QR Code

Comparison of Electrical Properties of β-Gallium Oxide (β-Ga2O3) Power SBDs with Guard Ring Structures

Guard Ring 구조에 따른 β-산화갈륨(β-Ga2O3) 전력 SBDs의 전기적 특성 비교

  • Hoon-Ki Lee (Quantum Sensors Research Group, Electronics and Telecommunications Research Institute) ;
  • Kyujun Cho (RF/Power Components Research Group, Electronics and Telecommunications Research Institute) ;
  • Woojin Chang (RF/Power Components Research Group, Electronics and Telecommunications Research Institute) ;
  • Jae-Kyoung Mun (Quantum Sensors Research Group, Electronics and Telecommunications Research Institute)
  • 이훈기 (한국전자통신연구원 양자센서연구그룹) ;
  • 조규준 (한국전자통신연구원 RF/전력부품연구그룹) ;
  • 장우진 (한국전자통신연구원 RF/전력부품연구그룹) ;
  • 문재경 (한국전자통신연구원 양자센서연구그룹)
  • Received : 2023.12.12
  • Accepted : 2024.01.04
  • Published : 2024.03.01

Abstract

This reports the electrical properties of single-crystal β-gallium oxide (β-Ga2O3) vertical Schottky barrier diodes (SBDs) with a different guard ring structure. The vertical Schottky barrier diodes (V-SBDs) were fabricated with two types guard ring structures, one is with metal deposited on the Al2O3 passivation layer (film guard ring: FGR) and the other is with vias formed in the Al2O3 passivation layer to allow the metal to contact the Ga2O3 surface (metal guard ring: MGR). The forward current values of FGR and MGR V-SBD are 955 mA and 666 mA at 9 V, respectively, and the specific on-resistance (Ron,sp) is 5.9 mΩ·cm2 and 29 mΩ·cm2. The series resistance (Rs) in the nonlinear section extracted using Cheung's formula was 6 Ω, 4.8 Ω for FGR V-SBD, 10.7 Ω, 6.7 Ω for MGR V-SBD, respectively, and the breakdown voltage was 528 V for FGR V-SBD and 358 V for MGR V-SBD. Degradation of electrical characteristics of the MGR V-SBD can be attributed to the increased reverse leakage current caused by the guard ring structure, and it is expected that the electrical performance can be improved by preventing premature leakage current when an appropriate reverse voltage is applied to the guard ring area. On the other hand, FGR V-SBD shows overall better electrical properties than MGR V-SBD because Al2O3 was widely deposited on the Ga2O3 surface, which prevent leakage current on the Ga2O3 surface.

Keywords

Acknowledgement

본 연구는 산업통상자원부(산업부)의 전략적핵심소재기술사업(과제번호: 10080736)과 교육부 산하 한국연구재단(NRF)의 지원(과제번호: NRF-2020M3H4A3081798)에 의하여 수행된 결과임을 밝혀 둡니다.

References

  1. D. A. Oulianov, R. A. Crowell, D. J. Gosztola, I. A. Shkrob, O. J. Korovyanko, and R. C. Rey-de-Castro, J. Appl. Phys., 101, 053102 (2007). doi: https://doi.org/10.1063/1.2696204
  2. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol., 31, 034001 (2016). doi: https://doi.org/10.1088/0268-1242/31/3/034001
  3. H. von Wenckstern, Adv. Electron. Mater., 3, 1600350 (2017). doi: https://doi.org/10.1002/aelm.201600350
  4. S. J. Pearton, J. Yang, P. H. Carey IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). doi: https://doi.org/10.1063/1.5006941
  5. Z. Galazka, Semicond. Sci. Technol., 33, 113001 (2018). doi: https://doi.org/10.1088/1361-6641/aadf78
  6. M. Higashiwaki and G. H. Jessen, Appl. Phys. Lett., 112, 060401 (2018). doi: https://doi.org/10.1063/1.5017845
  7. J. L. Lyons, Semicond. Sci. Technol., 33, 05LT02 (2018). doi: https://doi.org/10.1088/1361-6641/aaba98
  8. S. J. Pearton, F. Ren, M. Tadjer, and J. Kim, J. Appl. Phys., 124, 220901 (2018). doi: https://doi.org/10.1063/1.5062841
  9. J. Zhang, J. Shi, D. C. Qi, L. Chen, and K.H.L. Zhang, APL Mater., 8, 020906 (2020). doi: https://doi.org/10.1063/1.5142999
  10. J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R.C.N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, Adv. Electron. Mater., 4, 1600501 (2017). doi: https://doi.org/10.1002/aelm.201600501
  11. K. D. Chabak, J. P. McCandless, N. A. Moser, A. J. Green, K. Mahalingam, A. Crespo, N. Hendricks, B. M. Howe, S. E. Tetlak, K. Leedy, R. C. Fitch, D. Wakimoto, K. Sasaki, A. Kuramata, and G. H. Jessen, IEEE Electron Device Lett., 39, 67 (2018). doi: https://doi.org/10.1109/LED.2017.2779867
  12. K. J. Cho, J. K. Mun, W. Chang, and H. W. Jung, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 78 (2020). doi: https://doi.org/10.4313/JKEM.2020.33.1.78
  13. M. Orita, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett., 77, 4166 (2000). doi: https://doi.org/10.1063/1.1330559
  14. K. Ueno, T. Urushidani, K. Hashimoto, and Y. Seki, IEEE Electron Device Lett., 16, 331 (1995). doi: https://doi.org/10.1109/55.388724
  15. J. K. Mun, K. Cho, W. Chang, H. W. Jung, and J. Do, ECS J. Solid State Sci. Technol., 8, Q3079 (2019). doi: https://doi.org/10.1149/2.0151907jss
  16. D. C. Sheridan, G. Niu, J. N. Merrett, J. D. Cressler, C. Ellis, and C. C. Tin, Solid-State Electron., 44, 1367 (2000). doi: https://doi.org/10.1016/S0038-1101(00)00081-2
  17. C. H. Lin, Y. Yuda, M. H. Wong, M. Sato, N. Takekawa, K. Konishi, T. Watahiki, M. Yamamuka, H. Murakami, Y. Kumagai, and M. Higashiwaki, IEEE Electron Device Lett., 40, 1487 (2019). doi: https://doi.org/10.1109/LED.2019.2927790
  18. J. H. Choi and H. Y. Cha, Inst. Korean Electr. Electron. Eng., 23, 193 (2019). doi: https://doi.org/10.7471/ikeee.2019.23.1.193
  19. H. C. Lin, P. D. Ye, and G. D. Wilk, Appl. Phys. Lett., 87, 182904 (2005). doi: https://doi.org/10.1063/1.2120904
  20. S. Li, J. Luo, and T. Ye, ECS J. Solid State Sci. Technol., 12, 053006 (2023). doi: https://doi.org/10.1149/2162-8777/acd1ae
  21. J. K. Mun, K. Cho, W. Chang, H. Lee, S. Bae, J. Kim, and H. Sung, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 201 (2019). doi: https://doi.org/10.4313/JKEM.2019.32.3.201
  22. S. K. Cheung and N. W. Cheung, Appl. Phys. Lett., 49, 85 (1986). doi: https://doi.org/10.1063/1.97359
  23. V. R. Reddy, V. Janardhanam, J. W. Ju, H. J. Yun, and C. J. Choi, Solid State Commun., 179, 34 (2014). doi: https://doi.org/10.1016/j.ssc.2013.11.011
  24. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Oxford University Press, 1988).
  25. P. L. Hanselaer, W. H. Laflere, R. L. Van Meirhaeghe, and F. Cardon, J. Appl. Phys., 56, 2309 (1984). doi: https://doi.org/10.1063/1.334265
  26. C. Detavernier, R. L. Van Meirhaeghe, R. Donaton, K. Maex, and F. Cardon, J. Appl. Phys., 84, 3226 (1998) doi: https://doi.org/10.1063/1.368475
  27. R. Sharma, M. Xian, M. E. Law, M. Tadjer, F. Ren, and S. J. Pearton, J. Vac. Sci. Technol. A, 38, 063414 (2020). doi: https://doi.org/10.1116/6.0000693
  28. W. S. Tan, M. J. Uren, P. A. Houston, R. T. Green, R. S. Balmer, and T. Martin, IEEE Electron Device Lett., 27, 1 (2006). doi: https://doi.org/10.1109/LED.2005.860383
  29. W. Lu, V. Kumar, R. Schwindt, E. Piner, and I. Adesida, SolidState Electron., 46, 1441 (2002). doi: https://doi.org/10.1016/s0038-1101(02)00089-8
  30. J. H. Ji and J. H. Koh, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 3 (2017). https://kiss.kstudy.com/thesis/thesis-view.asp?key=3517150