DOI QR코드

DOI QR Code

EMI (Electromagnetic Interference) Shielding Properties of Barium-Based Ferrite Thin Films Prepared by Spin Spray Method

스핀 스프레이 방식으로 제조된 바륨계 페라이트 박막의 EMI (Electromagnetic Interference) 차폐 특성

  • Hye Ryeong Oh (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute) ;
  • Yeon-Ju Park (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute) ;
  • Woo-Sung Lee (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute) ;
  • Chan-Sei Yoo (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute) ;
  • Myong-Jae Yoo (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute) ;
  • Intae Seo (Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute)
  • 오혜령 (한국전자기술연구원 융복합전자소재센터) ;
  • 박연주 (한국전자기술연구원 융복합전자소재센터) ;
  • 이우성 (한국전자기술연구원 융복합전자소재센터) ;
  • 유찬세 (한국전자기술연구원 융복합전자소재센터) ;
  • 유명재 (한국전자기술연구원 융복합전자소재센터) ;
  • 서인태 (한국전자기술연구원 융복합전자소재센터)
  • Received : 2023.12.27
  • Accepted : 2024.01.03
  • Published : 2024.03.01

Abstract

The low-temperature deposition of BaNi(2-x)CoxFe16O27 thin films with a Ba hexaferrite structure for electromagnetic shielding was studied. The BaNi(2-x)CoxFe16O27 thin films produced through the spin spray process were suitable for thin film deposition on a flexible substrate because it crystallized well at low temperature below 90℃. The change in shielding characteristics depending on the Co content of the BaNi(2-x)CoxFe16O27 thin film was investigated, and excellent shielding characteristics with S21 of -1 dB were obtained in a wide frequency range of 26~40 GHz when the Co content was 0.4 or more. The purpose of this study is to analyze changes in shielding properties caused by change in Co content in relation to phase changes in BaNi(2-x)CoxFe16O27 and obtain basic data for developing excellent flexible electromagnetic wave shielding materials.

Keywords

Acknowledgement

This research was supported by Material & Device Packaging Program through the Korea Evaluation Institute of industrial technology (KEIT) funded by Ministry of Trade, Industry and Energy (MOTIE) (1415186006).

References

  1. A. Papathanassiou and A. Khoryaev, Cellular V2X as the Essential Enabler of Superior Global Connected Transportation Services, https://futurenetworks.ieee.org/tech-focus/june-2017/cellular-v2x (2017).
  2. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Appl. Phys. Lett., 92, 151911 (2008). doi: https://doi.org/10.1063/1.2907977
  3. M. Sandstrom, K. H. Mild, M. Sandstrom, and A. Berglund, Behav. Inf. Technol., 12, 359 (1993). doi: https://doi.org/10.1080/01449299308924400
  4. S. E. Lee, D. Kim, M. Y. Lee, M. K. Lee, E. Jeong, and Y. S. Lee, Polymer Korea, 39, 114 (2015). doi: https://doi.org/10.7317/pk.2015.39.1.114
  5. R. Ram, D. Khastgir, and M. Rahaman, Polym. Int., 68, 1194 (2019). doi: https://doi.org/10.1002/pi.5812
  6. X. Chen, X. Wang, L. Li, and S. Qi, J. Mater. Sci.: Mater. Electron., 27, 10045 (2016) doi: https://doi.org/10.1007/s10854-016-5076-2
  7. D. H. Lee, C. Y. Kwon, and K. S. Moon, J. Kor. Cryst. Growth Cryst. Technol., 31, 197 (2021). doi: https://doi.org/10.6111/JKCGCT.2021.31.5.197
  8. S. Ann and K. J. Kwon, J. Inst. Electron. Inf. Eng., 56, 93 (2019). doi: https://doi.org/10.5573/ieie.2019.56.10.93
  9. T. Nakamura and E. Hankui, J. Magn. Magn. Mater., 257, 158 (2003). doi: https://doi.org/10.1016/S0304-8853(02)00114-2
  10. N. Tran, T. L. Phan, N. T. Dang, D. S. Yang, and B. W. Lee, J. Phys. Chem. Solids, 131, 55 (2019). doi: https://doi.org/10.1016/j.jpcs.2019.03.015
  11. J. J. Xu, C. M. Yang, H. F. Zou, Y. H. Song, G. M. Gao, B. C. An, and S. C. Gan, J. Magn. Magn. Mater., 321, 3231 (2009). doi: https://doi.org/10.1016/j.jmmm.2009.05.039
  12. K. H. Shin, J. Korean Magn. Soc., 25, 22 (2015). doi: https://doi.org/10.4283/JKMS.2015.25.1.022
  13. Q. Zhang, T. Itoh, M. Abe, and Y. Tamaura, J. Appl. Phys., 73, 6284 (1993). doi: https://doi.org/10.1063/1.352671
  14. L. Wang, J. Song, Q. Zhang, X. Huang, and N. Xu, J. Alloys Compd., 481, 863 (2009). doi: https://doi.org/10.1016/j.jallcom.2009.03.136
  15. J. Kreisel, G. Lucazeau, and H. Vincent, J. Solid State Chem., 137, 127 (1998). doi: https://doi.org/10.1006/jssc.1997.7737
  16. S. Anand, S. Pauline, V. M. Vinosel, and M. A. Janifer, Mater. Today: Proc., 8, 476 (2019). doi: https://doi.org/10.1016/j.matpr.2019.02.141
  17. M. Abe and Y. Tamaura, Jpn. J. Appl. Phys., 22, L511 (1983). doi: https://doi.org/10.1143/JJAP.22.L511
  18. T. Nakamura, J. Appl. Phys., 88, 348 (2000). doi: https://doi.org/10.1063/1.373666
  19. A. M. Nicolson and G. F. Ross, IEEE Trans. Instrum. Meas., 19, 377 (1970). doi: https://doi.org/10.1109/TIM.1970.4313932