DOI QR코드

DOI QR Code

Size dependent torsional vibration of a rotationally restrained circular FG nanorod via strain gradient nonlocal elasticity

  • Busra Uzun (Bursa Uludag University, Faculty of Engineering, Department of Civil Engineering) ;
  • Omer Civalek (Akdeniz University, Faculty of Engineering, Department of Civil Engineering) ;
  • M. Ozgur Yayli (Bursa Uludag University, Faculty of Engineering, Department of Civil Engineering)
  • Received : 2022.06.09
  • Accepted : 2023.12.05
  • Published : 2024.02.25

Abstract

Dynamical behaviors of one-dimensional (1D) nano-sized structures are of great importance in nanotechnology applications. Therefore, the torsional dynamic response of functionally graded nanorods which could be used to model the nano electromechanical systems or micro electromechanical systems with torsional motion about the center of twist is examined based on the theory of strain gradient nonlocal elasticity in this work. The mathematical background is constructed based on both strain gradient theory and Eringen's nonlocal elasticity theory. The equation of motions and boundary conditions of radially functionally graded nanorods are derived using Hamilton's principle and then transformed into the eigenvalue analysis by using Fourier sine series. A general coefficient matrix is obtained to assemble the Stokes' transformation. The case of a restrained functionally graded nanorod embedded in two elastic springs against torsional rotation is then deeply investigated. The effect of changing the functionally graded index, the stiffness of elastic boundary conditions, the length scale parameter and nonlocal parameter are investigated in detail.

Keywords

References

  1. Akgoz, B. and Civalek, O. (2013), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004
  2. Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
  3. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231
  4. Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R. and De Sciarra, F.M. (2018), "Free vibrations of elastic beams by modified nonlocal strain gradient theory", Int. J. Eng. Sci., 133, 99-108. https://doi.org/10.1016/j.ijengsci.2018.09.002
  5. Arda, M. and Aydogdu, M. (2021), "Dynamics of nonlocal strain gradient nanobeams with longitudinal magnetic field", Math. Meth. Appl. Sci., 2021, 1-18. https://doi.org/10.1002/mma.7268
  6. Barretta, R., Faghidian, S.A., De Sciarra, F.M. and Vaccaro, M.S. (2019), "Nonlocal strain gradient torsion of elastic beams: variational formulation and constitutive boundary conditions", Arch. Appl. Mech., 90(4), 691-706. https://doi.org/10.1007/s00419-019-01634-w
  7. Bohidar, S.K., Sharma, R. and Mishra, P.R. (2014), "Functionally Graded Materials: A Critical review", Int. J. Res., 1(7), 289-301.
  8. Calim, F.F. (2019), "Vibration analysis of functionally graded Timoshenko beams on Winkler-Pasternak elastic foundation", Iran J. Sci. Technol. Transact. Civil Eng., 44(3), 901-920. https://doi.org/10.1007/s40996-019-00283-x
  9. Calim, F.F. and Cuma, Y.C. (2021), "Forced vibration analysis of viscoelastic helical rods with varying cross-section and functionally graded material", Mech. Based Des. Struct., 51(7), 3620-3631. https://doi.org/10.1080/15397734.2021.1931307
  10. Civalek, O., Uzun, B. and Yayli, M.O. (2022b), "A Fourier sine series solution of static and dynamic response of nano/microscaled FG rod under torsional effect", Adv. Nano Res., 12(5), 467-487. https://doi.org/10.12989/anr.2022.12.5.467
  11. Civalek, O., Uzun, B. and Yayli, M.O. (2022a), "Torsional vibrations of functionally graded restrained nanotubes", Eur. Phys. J. Plus, 137(1). https://doi.org/10.1140/epjp/s13360-021-02309-8
  12. Civalek, O., Uzun, B. and Yayli, M.O. (2022c), "An effective analytical method for buckling solutions of a restrained FGM nonlocal beam", Comput. Appl. Math., 41(2). https://doi.org/10.1007/s40314-022-01761-1
  13. Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020), "Sizedependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135(4). https://doi.org/10.1140/epjp/s13360-020-00385-w
  14. Devnath, I., Islam, M.N., Siddique, M.U.M. and Tounsi, A. (2022), "Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem", Adv. Nano Res., 12(2), 139-150. https://doi.org/10.12989/anr.2022.12.2.139
  15. Ding, H. and She, G. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63. https://doi.org/10.12989/sem.2021.80.1.063
  16. Dong, B., Li, H., Wang, X., Sun, W., Luo, Z., Ma, H., Qin, Z. and Han, Q. (2022), "Nonlinear forced vibration of hybrid fiber/graphene nanoplatelets/polymer composite sandwich cylindrical shells with hexagon honeycomb core", Nonlinear Dyn., 110(4), 3303-3331. https://doi.org/10.1007/s11071-022-07811-x
  17. Ebrahimi, F., Barati, M.R. and Civalek, O. (2019), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 36(3), 953-964. https://doi.org/10.1007/s00366-019-00742-z
  18. Ermis, M. (2020), "Eksenel fonksiyonel derecelendirilmis helislerin karisik sonlu eleman yontemi ile serbest titresim analizi", Nigde Omer Halisdemir universitesi Muhendislik Bilimleri Dergisi, 10(1), 319-327. https://doi.org/10.28948/ngumuh.823385
  19. Ghandourah, E.E., Ahmed, H.M., Eltaher, M.A., Attia, M.A. and Abdraboh, A.M. (2021), "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4), 405-422. https://doi.org/10.12989/anr.2021.11.4.405
  20. Gul, U. and Aydogdu, M. (2021), "Transverse wave propagation analysis in single-walled and double-walled carbon nanotubes via higher-order doublet mechanics theory", Waves Random Complex Med., 33(3), 762-793. https://doi.org/10.1080/17455030.2021.1959085
  21. Hadji, L., Avcar, M. and Civalek, O. (2021), "An analytical solution for the free vibration of FG nanoplates", J. Brazil. Soc. Mech. Sci. Eng., 43(9). https://doi.org/10.1007/s40430-021-03134-x
  22. Jalaei, M., Thai, H. and Civalek, O. (2022), "On viscoelastic transient response of magnetically imperfect functionally graded nanobeams", Int. J. Eng. Sci., 172, 103629. https://doi.org/10.1016/j.ijengsci.2022.103629
  23. Khoram, M. M., Hosseini, M., Hadi, A. and Shishesaz, M. (2020), "Bending analysis of bidirectional FGM Timoshenko nanobeam subjected to mechanical and magnetic forces and resting on Winkler-Pasternak Foundation", Int. J. Appl. Mech., 12(8), 2050093. https://doi.org/10.1142/s1758825120500933
  24. Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157-172. https://doi.org/10.12989/anr.2020.9.3.157
  25. Kiani, Y. and Eslami, M. R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des. 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4
  26. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/s1359-8368(96)00016-9
  27. Li, H., Dong, B., Zhao, J., Zou, Z., Zhao, S., Wang, Q., Han, Q. and Wang, X. (2022a), "Nonlinear free vibration of functionally graded fiber-reinforced composite hexagon honeycomb sandwich cylindrical shells", Eng. Struct., 263, 114372. https://doi.org/10.1016/j.engstruct.2022.114372
  28. Li, H., Li, Z., Xiao, Z., Xiong, J., Wang, X., Han, Q., Zhou, J. and Guan, Z. (2022b), "Vibro-impact response of FRP sandwich plates with a foam core reinforced by chopped fiber rods", Compos. Part B Eng., 242, 110077. https://doi.org/10.1016/j.compositesb.2022.110077
  29. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
  30. Li, L., Hu, Y. and Li, X. (2016), "Longitudinal vibration of sizedependent rods via nonlocal strain gradient theory", Int. J. Mech. Sci., 115-116, 135-144. https://doi.org/10.1016/j.ijmecsci.2016.06.011
  31. Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
  32. Lim, C., Zhang, G. and Reddy, J. N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  33. Madenci, E. (2021), "Free vibration and static analyses of metalceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493. https://doi.org/10.12989/scs.2021.39.5.493
  34. Mahinzare, M., Amanpanah, S. and Ghadiri, M. (2021), "SizeDependent higher order Thermo-Mechanical vibration analysis of two directional functionally graded material nanobeam", J. Solid Mech., 13(1), 11-26. https://doi.org/10.22034/jsm.2019.1866704.1427
  35. Naebe, M. and Shirvanimoghaddam, K. (2016), "Functionally graded materials: A review of fabrication and properties", Appl. Mater. Today, 5, 223-245. https://doi.org/10.1016/j.apmt.2016.10.001
  36. Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13. https://doi.org/10.12989/anr.2020.8.1.013
  37. Norouzzadeh, A., Ansari, R. and Rouhi, H. (2019), "An analytical study on wave propagation in functionally graded nanobeams/tubes based on the integral formulation of nonlocal elasticity", Waves Random Complex Med., 30(3), 562-580. https://doi.org/10.1080/17455030.2018.1543979
  38. Numanoglu, H.M., Ersoy, H., Akgoz, B. and Civalek, O. (2021), "A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method", Math. Meth. Appl. Sci., 45(5), 2592-2614. https://doi.org/10.1002/mma.7942
  39. Rahmani, A., Babaei, A. and Faroughi, S. (2020), "Vibration characteristics of functionally graded Micro-Beam carrying an attached mass", Mech. Adv. Compos. Struct., 7(1), 49-58. https://doi.org/10.22075/macs.2019.18186.1214
  40. Rao, S.S. (2019) Vibration of Continuous Systems, John Wiley & Sons, Hoboken, NJ, U.S.A.
  41. Sahmani, S. and Safaei, B. (2019), "Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects", Thin Wall. Struct., 140, 342-356. https://doi.org/10.1016/j.tws.2019.03.045
  42. Setoodeh, A., Shahri, M.R.Z. and Rezaei, M.P. (2016), "Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory", Appl. Math. Mech., 37(6), 725-740. https://doi.org/10.1007/s10483-016-2085-6
  43. Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Modell., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073
  44. Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2020), "Torsional vibrations investigation of nonlinear nonlocal behavior in terms of functionally graded nanotubes", Int. J. Non-Linear Mech., 124, 103513. https://doi.org/10.1016/j.ijnonlinmec.2020.103513
  45. Shen, Y., Chen, Y. and Li, L. (2016), "Torsion of a functionally graded material", Int. J. Eng. Sci., 109, 14-28. https://doi.org/10.1016/j.ijengsci.2016.09.003
  46. Shi, X., Zuo, P., Zhong, R., Guo, C. and Wang, Q. (2022), "Vibration analysis of combined functionally graded cylindrical-conical shells coupled with annular plates in thermal environment", Compos. Struct., 294, 115738. https://doi.org/10.1016/j.compstruct.2022.115738
  47. Timesli, A. (2021), "A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls", Adv. Nano Res., 11(6), 581-593. https://doi.org/10.12989/anr.2021.11.6.581
  48. Tlidji, Y., Benferhat, R., Trinh, L.C., Tahar, H.D. and Abdelouahed, T. (2021), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditions", Adv. Nano Res., 11(4), 347-359. https://doi.org/10.12989/.2021.11.4.347
  49. Uzun, B. and Yayli, M.O. (2020), "Nonlocal vibration analysis of Ti-6Al-4V/ZrO2 functionally graded nanobeam on elastic matrix", Arab. J. Geosci., 13(4). https://doi.org/10.1007/s12517-020-5168-4
  50. Xu, X., Wang, X., Zheng, M. and Ma, Z. (2017), "Bending and buckling of nonlocal strain gradient elastic beams", Compos. Struct., 160, 366-377. https://doi.org/10.1016/j.compstruct.2016.10.038
  51. Yayli, M.O., Uzun, B. and Deliktas, B. (2021), "Buckling analysis of restrained nanobeams using strain gradient elasticity", Waves Random Complex Med., 32(6), 2960-2979. https://doi.org/10.1080/17455030.2020.1871112
  52. Zarezadeh, E., Hosseini, V. and Hadi, A. (2019), "Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory", Mech. Based Des. Struct. Mach., 48(4), 480-495. https://doi.org/10.1080/15397734.2019.1642766
  53. Zhang, X., Zheng, S. and Zhou, Y. (2019), "An effective approach for stochastic natural frequency analysis of circular beams with radially varying material inhomogeneities", Mater. Res. Express, 6(10), 105701. https://doi.org/10.1088/2053-1591/ab361c