References
- Akgoz, B. and Civalek, O. (2013), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004
- Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
- Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231
- Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R. and De Sciarra, F.M. (2018), "Free vibrations of elastic beams by modified nonlocal strain gradient theory", Int. J. Eng. Sci., 133, 99-108. https://doi.org/10.1016/j.ijengsci.2018.09.002
- Arda, M. and Aydogdu, M. (2021), "Dynamics of nonlocal strain gradient nanobeams with longitudinal magnetic field", Math. Meth. Appl. Sci., 2021, 1-18. https://doi.org/10.1002/mma.7268
- Barretta, R., Faghidian, S.A., De Sciarra, F.M. and Vaccaro, M.S. (2019), "Nonlocal strain gradient torsion of elastic beams: variational formulation and constitutive boundary conditions", Arch. Appl. Mech., 90(4), 691-706. https://doi.org/10.1007/s00419-019-01634-w
- Bohidar, S.K., Sharma, R. and Mishra, P.R. (2014), "Functionally Graded Materials: A Critical review", Int. J. Res., 1(7), 289-301.
- Calim, F.F. (2019), "Vibration analysis of functionally graded Timoshenko beams on Winkler-Pasternak elastic foundation", Iran J. Sci. Technol. Transact. Civil Eng., 44(3), 901-920. https://doi.org/10.1007/s40996-019-00283-x
- Calim, F.F. and Cuma, Y.C. (2021), "Forced vibration analysis of viscoelastic helical rods with varying cross-section and functionally graded material", Mech. Based Des. Struct., 51(7), 3620-3631. https://doi.org/10.1080/15397734.2021.1931307
- Civalek, O., Uzun, B. and Yayli, M.O. (2022b), "A Fourier sine series solution of static and dynamic response of nano/microscaled FG rod under torsional effect", Adv. Nano Res., 12(5), 467-487. https://doi.org/10.12989/anr.2022.12.5.467
- Civalek, O., Uzun, B. and Yayli, M.O. (2022a), "Torsional vibrations of functionally graded restrained nanotubes", Eur. Phys. J. Plus, 137(1). https://doi.org/10.1140/epjp/s13360-021-02309-8
- Civalek, O., Uzun, B. and Yayli, M.O. (2022c), "An effective analytical method for buckling solutions of a restrained FGM nonlocal beam", Comput. Appl. Math., 41(2). https://doi.org/10.1007/s40314-022-01761-1
- Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020), "Sizedependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135(4). https://doi.org/10.1140/epjp/s13360-020-00385-w
- Devnath, I., Islam, M.N., Siddique, M.U.M. and Tounsi, A. (2022), "Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem", Adv. Nano Res., 12(2), 139-150. https://doi.org/10.12989/anr.2022.12.2.139
- Ding, H. and She, G. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63. https://doi.org/10.12989/sem.2021.80.1.063
- Dong, B., Li, H., Wang, X., Sun, W., Luo, Z., Ma, H., Qin, Z. and Han, Q. (2022), "Nonlinear forced vibration of hybrid fiber/graphene nanoplatelets/polymer composite sandwich cylindrical shells with hexagon honeycomb core", Nonlinear Dyn., 110(4), 3303-3331. https://doi.org/10.1007/s11071-022-07811-x
- Ebrahimi, F., Barati, M.R. and Civalek, O. (2019), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 36(3), 953-964. https://doi.org/10.1007/s00366-019-00742-z
- Ermis, M. (2020), "Eksenel fonksiyonel derecelendirilmis helislerin karisik sonlu eleman yontemi ile serbest titresim analizi", Nigde Omer Halisdemir universitesi Muhendislik Bilimleri Dergisi, 10(1), 319-327. https://doi.org/10.28948/ngumuh.823385
- Ghandourah, E.E., Ahmed, H.M., Eltaher, M.A., Attia, M.A. and Abdraboh, A.M. (2021), "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4), 405-422. https://doi.org/10.12989/anr.2021.11.4.405
- Gul, U. and Aydogdu, M. (2021), "Transverse wave propagation analysis in single-walled and double-walled carbon nanotubes via higher-order doublet mechanics theory", Waves Random Complex Med., 33(3), 762-793. https://doi.org/10.1080/17455030.2021.1959085
- Hadji, L., Avcar, M. and Civalek, O. (2021), "An analytical solution for the free vibration of FG nanoplates", J. Brazil. Soc. Mech. Sci. Eng., 43(9). https://doi.org/10.1007/s40430-021-03134-x
- Jalaei, M., Thai, H. and Civalek, O. (2022), "On viscoelastic transient response of magnetically imperfect functionally graded nanobeams", Int. J. Eng. Sci., 172, 103629. https://doi.org/10.1016/j.ijengsci.2022.103629
- Khoram, M. M., Hosseini, M., Hadi, A. and Shishesaz, M. (2020), "Bending analysis of bidirectional FGM Timoshenko nanobeam subjected to mechanical and magnetic forces and resting on Winkler-Pasternak Foundation", Int. J. Appl. Mech., 12(8), 2050093. https://doi.org/10.1142/s1758825120500933
- Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157-172. https://doi.org/10.12989/anr.2020.9.3.157
- Kiani, Y. and Eslami, M. R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des. 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/s1359-8368(96)00016-9
- Li, H., Dong, B., Zhao, J., Zou, Z., Zhao, S., Wang, Q., Han, Q. and Wang, X. (2022a), "Nonlinear free vibration of functionally graded fiber-reinforced composite hexagon honeycomb sandwich cylindrical shells", Eng. Struct., 263, 114372. https://doi.org/10.1016/j.engstruct.2022.114372
- Li, H., Li, Z., Xiao, Z., Xiong, J., Wang, X., Han, Q., Zhou, J. and Guan, Z. (2022b), "Vibro-impact response of FRP sandwich plates with a foam core reinforced by chopped fiber rods", Compos. Part B Eng., 242, 110077. https://doi.org/10.1016/j.compositesb.2022.110077
- Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
- Li, L., Hu, Y. and Li, X. (2016), "Longitudinal vibration of sizedependent rods via nonlocal strain gradient theory", Int. J. Mech. Sci., 115-116, 135-144. https://doi.org/10.1016/j.ijmecsci.2016.06.011
- Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
- Lim, C., Zhang, G. and Reddy, J. N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Madenci, E. (2021), "Free vibration and static analyses of metalceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493. https://doi.org/10.12989/scs.2021.39.5.493
- Mahinzare, M., Amanpanah, S. and Ghadiri, M. (2021), "SizeDependent higher order Thermo-Mechanical vibration analysis of two directional functionally graded material nanobeam", J. Solid Mech., 13(1), 11-26. https://doi.org/10.22034/jsm.2019.1866704.1427
- Naebe, M. and Shirvanimoghaddam, K. (2016), "Functionally graded materials: A review of fabrication and properties", Appl. Mater. Today, 5, 223-245. https://doi.org/10.1016/j.apmt.2016.10.001
- Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13. https://doi.org/10.12989/anr.2020.8.1.013
- Norouzzadeh, A., Ansari, R. and Rouhi, H. (2019), "An analytical study on wave propagation in functionally graded nanobeams/tubes based on the integral formulation of nonlocal elasticity", Waves Random Complex Med., 30(3), 562-580. https://doi.org/10.1080/17455030.2018.1543979
- Numanoglu, H.M., Ersoy, H., Akgoz, B. and Civalek, O. (2021), "A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method", Math. Meth. Appl. Sci., 45(5), 2592-2614. https://doi.org/10.1002/mma.7942
- Rahmani, A., Babaei, A. and Faroughi, S. (2020), "Vibration characteristics of functionally graded Micro-Beam carrying an attached mass", Mech. Adv. Compos. Struct., 7(1), 49-58. https://doi.org/10.22075/macs.2019.18186.1214
- Rao, S.S. (2019) Vibration of Continuous Systems, John Wiley & Sons, Hoboken, NJ, U.S.A.
- Sahmani, S. and Safaei, B. (2019), "Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects", Thin Wall. Struct., 140, 342-356. https://doi.org/10.1016/j.tws.2019.03.045
- Setoodeh, A., Shahri, M.R.Z. and Rezaei, M.P. (2016), "Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory", Appl. Math. Mech., 37(6), 725-740. https://doi.org/10.1007/s10483-016-2085-6
- Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Modell., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073
- Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2020), "Torsional vibrations investigation of nonlinear nonlocal behavior in terms of functionally graded nanotubes", Int. J. Non-Linear Mech., 124, 103513. https://doi.org/10.1016/j.ijnonlinmec.2020.103513
- Shen, Y., Chen, Y. and Li, L. (2016), "Torsion of a functionally graded material", Int. J. Eng. Sci., 109, 14-28. https://doi.org/10.1016/j.ijengsci.2016.09.003
- Shi, X., Zuo, P., Zhong, R., Guo, C. and Wang, Q. (2022), "Vibration analysis of combined functionally graded cylindrical-conical shells coupled with annular plates in thermal environment", Compos. Struct., 294, 115738. https://doi.org/10.1016/j.compstruct.2022.115738
- Timesli, A. (2021), "A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls", Adv. Nano Res., 11(6), 581-593. https://doi.org/10.12989/anr.2021.11.6.581
- Tlidji, Y., Benferhat, R., Trinh, L.C., Tahar, H.D. and Abdelouahed, T. (2021), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditions", Adv. Nano Res., 11(4), 347-359. https://doi.org/10.12989/.2021.11.4.347
- Uzun, B. and Yayli, M.O. (2020), "Nonlocal vibration analysis of Ti-6Al-4V/ZrO2 functionally graded nanobeam on elastic matrix", Arab. J. Geosci., 13(4). https://doi.org/10.1007/s12517-020-5168-4
- Xu, X., Wang, X., Zheng, M. and Ma, Z. (2017), "Bending and buckling of nonlocal strain gradient elastic beams", Compos. Struct., 160, 366-377. https://doi.org/10.1016/j.compstruct.2016.10.038
- Yayli, M.O., Uzun, B. and Deliktas, B. (2021), "Buckling analysis of restrained nanobeams using strain gradient elasticity", Waves Random Complex Med., 32(6), 2960-2979. https://doi.org/10.1080/17455030.2020.1871112
- Zarezadeh, E., Hosseini, V. and Hadi, A. (2019), "Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory", Mech. Based Des. Struct. Mach., 48(4), 480-495. https://doi.org/10.1080/15397734.2019.1642766
- Zhang, X., Zheng, S. and Zhou, Y. (2019), "An effective approach for stochastic natural frequency analysis of circular beams with radially varying material inhomogeneities", Mater. Res. Express, 6(10), 105701. https://doi.org/10.1088/2053-1591/ab361c