DOI QR코드

DOI QR Code

Production of multipurpose cotton fabrics to improve the quality of aerobic and dance sportswear

  • Mingfa Gao (Department of Physical education, Wuhan University of Technology) ;
  • Bin Long (School of Sports Training, Wuhan Sports University)
  • 투고 : 2023.07.24
  • 심사 : 2023.11.30
  • 발행 : 2024.02.25

초록

The production of multipurpose cotton fabrics aimed at elevating the quality of aerobic and dance sportswear is explored in this study. Powder metallurgy, known for its high efficiency in manufacturing technological components with minimal waste, is employed as a method for fabricating brush ferrules for painting. The utilization of iron-copper material, prepared through powder metallurgy, enhances the strength and quality of the brush ferrules. A microscopic analysis reveals a robust interconnection between the particles of each layer achieved through isostatic pressure, resulting in a favorable microstructure. The relative density and strength of parts produced from copper-iron powder exhibit an increase with higher pressure levels. The application of this material in brush ferrules ensures their durability and longevity, thereby supporting the creation of artwork. The evolution of art over time reflects changing ideas and possibilities, and technological advancements have significantly improved artistic tools. The role of tools in artistic expression is paramount, and the integration of powder metallurgy materials in brush ferrules fortifies their artistic importance. In summary, this study underscores the advantages of powder metallurgy in augmenting the quality of art tools and facilitating artistic creation.

키워드

참고문헌

  1. Adams, J.P. (2015), History of Powder Metallurgy, ASM International. 
  2. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5. 
  3. Barbaros, I., Yang, Y., Safaei, B., Yang, Z., Qin, Z. and Asmael, M. (2022), "State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials", 11(1), 321-371. https://doi.org/10.1515/ntrev-2022-0017. 
  4. Benjamin, W. and Jennings, M.W. (2010), "The Work of Art in the Age of Its Technological Reproducibility [First Version]", Grey Room, 1(39), 11-37. https://doi.org/10.1162/grey.2010.1.39.11. 
  5. Brandoff, R. (2022), "Racial bias in paint and art materials", Art Therapy, 39(1), 50-53. https://doi.org/10.1080/07421656.2022.2035616. 
  6. Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Li, M.J. and Zou, Q. (2022), "webTWAS: A resource for disease candidate susceptibility genes identified by transcriptome-wide association study", Nucleic Acids Res., 50(D1), D1123-D1130. https://doi.org/10.1093/nar/gkab957. 
  7. Cavdar, U., u nlu, B. and Atik, E. (2014), "Effect of the copper amount in iron-based powder-metal compacts", Mater. Tehnol., 48(6), 977. http://mit.imt.si/Revija/izvodi/mit146/cavdar.pdf. 
  8. Cheng, F., Niu, B., Xu, N. and Zhao, X. (2024), "Resilient distributed secure consensus control for uncertain networked agent systems under hybrid DoS attacks", Commun. Nonlinear Sci. Numer. Simul., 129, 107689. https://doi.org/10.1016/j.cnsns.2023.107689. 
  9. Cheng, Q., Ali, H.E. and Albaijan, I. (2023), "Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis", Adv. Concr. Constr., 15(4), 215-228. https://doi.org/10.12989/acc.2023.15.4.215. 
  10. Cristofolini, I., Rao, A., Menapace, C. and Molinari, A. (2010), "Influence of sintering temperature on the shrinkage and geometrical characteristics of steel parts produced by powder metallurgy", J. Mater. Proc. Technol., 210(13), 1716-1725. https://doi.org/10.1016/j.jmatprotec.2010.06.002. 
  11. Dai, Y., Jiang, Z., Chen, K.Y., Zuo, D., Ali, H.E. and Albaijan, I. (2023), "Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures", Steel Compos. Struct., 48(4), 443. https://doi.org/10.12989/scs.2023.48.4.443. 
  12. Dewidar, M.M., Yoon, H.C. and Lim, J.K. (2006), "Mechanical properties of metals for biomedical applications using powder metallurgy process: A review", Metals Mater. Int., 12(3), 193. https://doi.org/10.1007/BF03027531. 
  13. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499. 
  14. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141. 
  15. Fu, L., Li, J., Yang, J., Liu, Y., He, C. and Chen, Y. (2023), "Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport", Adv. Nano Res., 15(5), 441-449. https://doi.org/10.12989/anr.2023.15.5.441. 
  16. Furuya, K., Jitsukawa, S. and Saito, T. (2022), "Application of the Sinter-HIP Method to Manufacture Cr&ndash, Mo&ndash, W&ndash, V&ndash, Co High-Speed Steel via Powder Metallurgy", Materials, 15(6). https://doi.org/10.3390/ma15062300. 
  17. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527. 
  18. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770. 
  19. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016b), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5. 
  20. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197. 
  21. Ghadiri, M., Shafiei, N. and Hossein Alavi, S. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. 
  22. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016c), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8. 
  23. Gilman, P.S. and Benjamin, J.S. (1983), "Mechanical alloying", Ann. Rev. Mater. Sci., 13(1), 279-300. https://doi.org/10.1146/annurev.ms.13.080183.001431. 
  24. Guan, S. (2023), "Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise", Adv. Nano Res., 15(2), 155-163. https://doi.org/10.12989/anr.2023.15.2.155. 
  25. He, L. and Deng, Q. (2023), "Construction of sports engineering structures with high resistance to improve the quality of sports training", Struct. Eng. Mech., 86(2), 211-220. https://doi.org/10.12989/sem.2023.86.2.211. 
  26. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x. 
  27. Huang, X., Chang, L., Zhao, H. and Cai, Z. (2022), "Study on craniocerebral dynamics response and helmet protective performance under the blast waves", Mater. Des., 224, 111408. https://doi.org/10.1016/j.matdes.2022.111408. 
  28. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7. 
  29. James, W.B. (2015), Powder Metallurgy Methods and Applications, ASM International. 
  30. Jia, S., Niu, X., Jia, F. and Mahmoudi, T. (2023), "Advantages and disadvantages of renewable energy-oil-environmental pollutionfrom the point of view of nanoscience", Adv. Concr. Constr., 16(1), 69-78. https://doi.org/10.12989/acc.2023.16.1.069. 
  31. Jin, H., Zhang, B. and Duan, X. (2023), "Impact of nanocomposite material to counter injury in physical sport in the tennis racket", Adv. Nano Res., 14(5), 435-442. https://doi.org/10.12989/anr.2023.14.5.435. 
  32. Kawasaki, A. and Watanabe, R. (1997), "Concept and P/M fabrication of functionally gradient materials", Ceram. Int., 23(1), 73-83. https://doi.org/10.1016/0272-8842(95)00143-3. 
  33. Lau, J.S. and Li, Z. (2023), "Human functions in innovation and sustainable marketing", Adv. Concr. Constr., 16(2), 97. https://doi.org/10.12989/acc.2023.16.2.097. 
  34. Lee, J. (1997), "Physically-based modeling of brush painting", Comput. Netw. ISDN Syst., 29(14), 1571-1576. https://doi.org/10.1016/S0169-7552(97)00073-1. 
  35. Li, J., Bin, N., Guo, F., Gao, X., Chen, R., Yao, H. and Zhou, C. (2023a), "Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development", Adv. Nano Res., 15(1), 49-57. https://doi.org/10.12989/anr.2023.15.1.049. 
  36. Li, X., Ali, H.E. and Albaijan, I. (2023b), "TiO 2-containing nanocomposite structure: Application and investigation in shoes sports medical soles in physical activities", Adv. Nano Res., 15(4), 329-337. https://doi.org/10.12989/anr.2023.15.4.329. 
  37. Li, Y., Li, M., Kong, X., Baniasadi, A., Shaker, A.H. and Ali, H.E. (2023c), "Psychological capital to foster employee creativity in nanotechnology companies: the mediating role of JS and CSR", Adv. Nano Res., 15(3), 277-283. https://doi.org/10.12989/anr.2023.15.3.277. 
  38. Li, Z. (2023), "Resistance of concrete made of fibers in weight lifting slabs against impact in sports training", Struct. Eng. Mech., 86(3), 325-336. https://doi.org/10.12989/sem.2023.86.3.325. 
  39. Li, Z., Peng, S. and Chen, G. (2023d), "Research on safety assessment and application effect of nanomedical products in physical education", Adv. Nano Res., 15(3), 253-261. https://doi.org/10.12989/anr.2023.15.3.253. 
  40. Liu, J., Zhou, Y., Lu, J., Cai, R., Zhao, T., Chen, Y., Zhang, M., Lu, X. and Chen, Y. (2023), "Injectable, tough and adhesive zwitterionic hydrogels for 3D-printed wearable strain sensors", Chem. Eng. J., 475 146340. https://doi.org/10.1016/j.cej.2023.146340. 
  41. Liu, S., Niu, B., Karimi, H.R. and Zhao, X. (2024), "Self-triggered fixed-time bipartite fault-tolerant consensus for nonlinear multiagent systems with function constraints on states", Chaos Solitons Fract., 178, 114367. https://doi.org/10.1016/j.chaos.2023.114367. 
  42. Ma, X., Luan, C., Fan, S., Deng, J., Zhang, L. and Cheng, L. (2021), "Comparison of braking behaviors between iron- and copper-based powder metallurgy brake pads that used for C/C-SiC disc", Tribol. Int., 154, 106686. https://doi.org/10.1016/j.triboint.2020.106686. 
  43. Ma, Z., Qi, J., Xun, W. and Li, Y. (2023), "Sports injury treatment and sports rehabilitation employing the Nanoparticles containing zinc oxide", Adv. Nano Res., 15(1), 67-74. https://doi.org/10.12989/anr.2023.15.1.067. 
  44. Mantell, C.L. (1959), "Electrodeposition of powders for powder metallurgy", J. Electrochem. Soc., 106(1), 70. https://doi.org/10.1149/1.2427271. 
  45. Manyanin, S., Vaxidov, U. and Maslov, K. (2021), "Operations for the preparation of metal powders for hot isostatic pressing", J. Phys. Conf. Series, 2131(5), 052029. https://doi.org/10.1088/1742-6596/2131/5/052029. 
  46. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155. 
  47. Narasimhan, K.S. (2001), "Sintering of powder mixtures and the growth of ferrous powder metallurgy", Mater. Chem. Phys., 67(1), 56-65. https://doi.org/10.1016/S0254-0584(00)00420-X. 
  48. Novak, P. (2020), "Advanced powder metallurgy technologies", Materials, 13(7). https://doi.org/10.3390/ma13071742. 
  49. Ogel, B. and Gurbuz, R. (2001a), "Microstructural characterization and tensile properties of hot pressed Al-SiC composites prepared from pure Al and Cu powders", Mater. Sci. Eng., 301, 213-220. https://doi.org/10.1016/S0921-5093(00)01656-7. 
  50. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dent., 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002. 
  51. Rajpurohit, A.S., Punde, N.S. and Srivastava, A.K. (2019), "A dual metal organic framework based on copper-iron clusters integrated sulphur doped graphene as a porous material for supercapacitor with remarkable performance characteristics", J. Colloid Interf. Sci., 553, 328-340. https://doi.org/10.1016/j.jcis.2019.06.031. 
  52. Richards, N. and Aspinwall, D. (1989), "Use of ceramic tools for machining nickel based alloys", Int. J. Mach. Tool Manuf., 29(4), 575-588. https://doi.org/10.1016/0890-6955(89)90072-2. 
  53. Ryan, G.E., Pandit, A.S. and Apatsidis, D.P. (2008), "Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique", Biomaterials, 29(27), 3625-3635. https://doi.org/10.1016/j.biomaterials.2008.05.032. 
  54. Scudino, S., Liu, G., Prashanth, K.G., Bartusch, B., Surreddi, K.B., Murty, B.S. and Eckert, J. (2009), "Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy", Acta Materialia, 57(6), 2029-2039. https://doi.org/10.1016/j.actamat.2009.01.010. 
  55. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061. 
  56. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/jsm.2019.563759.1273. 
  57. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y. 
  58. Shahabinejad, E., Shafiei, N. and Ghadiri, M. (2018), "Influence of temperature change on modal analysis of rotary functionally graded nano-beam in thermal environment", J. Solid Mech., 10(4), 779-803. 
  59. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9. 
  60. Song, S., Zhang, T. and Zhui, Z. (2023), "Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories", Steel Compos. Struct., 49(5), 487. https://doi.org/10.12989/scs.2023.49.5.487. 
  61. Su, Z., Meng, J. and Su, Y. (2023), "Application of SiO2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise", Adv. Nano Res., 14(4), 355-362. https://doi.org/10.12989/anr.2023.14.4.355. 
  62. Sudha, G.T., Stalin, B., Ravichandran, M. and Balasubramanian, M. (2020), "Mechanical properties, characterization and wear behavior of powder metallurgy composites - a review", Mater. Today Proc., 22, 2582-2596. https://doi.org/10.1016/j.matpr.2020.03.389. 
  63. Tun, K.S. and Gupta, M. (2007), "Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method", Compos. Sci. Technol., 67(13), 2657-2664. https://doi.org/10.1016/j.compscitech.2007.03.006. 
  64. Wang, G., Peng, K., Zhou, H., Liu, G., Lou, Z. and Pan, F. (2023), "Nanocomposite reinforced structures to deal with injury in physical sports", Adv. Nano Res., 14(6), 541-555. https://doi.org/10.12989/anr.2023.14.6.541. 
  65. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007. 
  66. Wong-A ngel, W.D., Tellez-Jurado, L., Chavez-Alcala, J.F., Chavira-Martinez, E. and Verduzco-Cedeno, V.F. (2014), "Effect of copper on the mechanical properties of alloys formed by powder metallurgy", Mater. Des., 58, 12-18. https://doi.org/10.1016/j.matdes.2014.02.002. 
  67. Wu, L., Beirne, S., Cabot, J.M., Paull, B., Wallace, G.G. and Innis, P.C. (2021), "Fused filament fabrication 3D printed polylactic acid electroosmotic pumps", Lab on a Chip, 21(17), 3338-3351. https://doi.org/10.1039/D1LC00452B. 
  68. Xie, Y., Meng, X., Chang, Y., Mao, D., Yang, Y., Xu, Y., Wan, L. and Huang, Y. (2022), "Ameliorating strength-ductility efficiency of graphene nanoplatelet-reinforced aluminum composites via deformation-driven metallurgy", Compos. Sci. Technol., 219, 109225. https://doi.org/10.1016/j.compscitech.2021.109225. 
  69. Xiong, W., Ke, H., Krishnamurthy, R., Wells, P., Barnard, L., Odette, G.R. and Morgan, D. (2014), "Thermodynamic models of low-temperature Mn-Ni-Si precipitation in reactor pressure vessel steels", MRS Commun., 4(3), 101-105. https://doi.org/10.1557/mrc.2014.21. 
  70. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395. 
  71. Xue, B., Yang, Q., Jin, Y., Zhu, Q., Lan, J., Lin, Y., Tan, J., Liu, L., Zhang, T., Chirwa, E.M.N. and Zhou, X. (2023), "Genotoxicity assessment of haloacetaldehyde disinfection byproducts via a simplified yeast-based toxicogenomics assay", Environ. Sci. Technol., 57(44), 16823-16833. https://doi.org/10.1021/acs.est.3c04956. 
  72. Yang, Y. and Mao, Y. (2023), "Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction", Geomech. Eng., 35(2), 181-194. https://doi.org/10.12989/gae.2023.35.2.181. 
  73. Ye, M., HangKong, O., Lin, Y., Ynag, Q., Xu, Q., Chen, T., Sun, L. and Ma, L. (2023), "Electron transport properties of Y-type zigzag branched carbon nanotubes", Adv. Nano Res., 15(3), 263-275. https://doi.org/10.12989/.2023.15.3.263. 
  74. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022), "Distance-based support vector machine to predict DNA N6-methyladenine modification", Curr. Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517. 
  75. Zhang, L. and Huang, Y. (2023), "Investigating the role of nano in preserving the environment with new energy and preventing oil pollution", Adv. Nano Res., 15(6), 541-550. https://doi.org/10.12989/anr.2023.15.6.541. 
  76. Zhang, P., Song, J. and Mahmoudi, T. (2023a), "Simulation and modeling for stability analysis of functionally graded nonuniform pipes with porosity-dependent properties", Steel Compos. Struct., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235. 
  77. Zhang, X., Li, J., Cui, Y., Habibi, M., Ali, H.E., Albaijan, I. and Mahmoudi, T. (2023b), "Static analysis of 2D-FGnonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory", Steel Compos. Struct., 49(3), 293-306. https://doi.org/10.12989/scs.2023.49.3.293. 
  78. Zhang, Z., Du, J. and Mahmoudi, T. (2023c), "Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil", Adv. Nano Res., 15(4), 355-366. https://doi.org/10.12989/anr.2023.15.4.355. 
  79. Zhao, H., Wang, H., Niu, B., Zhao, X. and Xu, N. (2024), "Adaptive fuzzy decentralized optimal control for interconnected nonlinear systems with unmodeled dynamics via mixed data and event driven method", Fuzz. Sets Syst., 474, 108735. https://doi.org/10.1016/j.fss.2023.108735.