References
- Abouelregal, A.E., Marin, M. and Askar, S.S. (2023), "Analysis of the magneto-thermoelastic vibrations of rotating Euler- Bernoulli nanobeams using the nonlocal elasticity model", Bound. Value Probl., 21. https://doi.org/10.1186/s13661-023-01706-5
- Abouelregal, A.E. and Marin, M. (2020), "The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory", Symmetry, 12, 1276. https://doi.org/10.3390/sym12081276
- Abouelregal, A.E. and Sedighi, H.M. (2022), "Thermoelastic characteristics of moving viscoelastic nanams based on the nonlocal couple stress theory and dual-phase lag model", Phys. Scr., 97(11), 3. https://doi.org/10.1088/1402-4896/ac97cc
- Alazwari, M.A., Esen I, Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-51. https://doi.org/10.12989/anr.2022.12.3.231
- Aliasghary, M., Mobki, H., Ouakad, H.M. (2022), "Pull-in phenomenon in the electrostatically micro-switch suspended between two conductive plates using the artificial neural network", J. Appl. Comput. Mech., 8(4), 1222-1235. https://doi.org/10.22055/jacm.2021.38569.3248
- Anjum, N., He, J., He, C., Ashiq, A. (2022), "A brief review on the asymptotic methods for the periodic behaviour of microelectron-mechanical systems", J. Appl. Comput. Mech., 8(3), 1120-1140. https://doi.org/10.22055/jacm.2022.39404.3401
- Arhami, M., Koochi, A. and Gharib, M.R. (2022), "Nonlocal coupled thermoelastic analysis of nanobeam under Casimir force", Arch. Appl. Mech., 92, 3729-3746. https://doi.org/10.1007/s00419-022-02258-3
- Askarian, A.R., Permoon, M.R. and Shakouri, M. (2020), "Vibration analysis of pipes conveying fluid resting on a fractional Kelvin-Voigt viscoelastic foundation with general boundary conditions", Int. J. Mech. Sci., 179, 105702. https://doi.org/10.1016/j.ijmecsci.2020.105702
- Atanackovic, T.M. and Pilipovic, S. (2022), "Zener model with general fractional calculus: thermodynamical restrictions", Fractals, 6, 617. https://doi.org/10.3390/fractalfract6100617
- Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037
- Bagley, R.L. and Torvik, P.J. (1983), "Fractional calculus-a different approach to the analysis of viscoelastically damped structures", AIAA J., 21(5), 741-748. https://doi.org/10.2514/3.8142
- Bagley, R.L. and Torvik, P.J. (1983), "A theoretical basis for the application of fractional calculus to viscoelasticity", J. Rheol., 27(3), 201-210. https://doi.org/10.1122/1.549724
- E. Blanc, D. Komatitsch, E. Chaljub, B. Lombard, Z. Xie, (2016), "Highly-accurate stability preserving optimization of the Zener viscoelastic model, with application to wave propagation in the presence of attenuation," Geophys. J. Int., 205, 427-439. https://doi.org/10.1093/gji/ggw024
- Borjalilou, V. and Asghari, M.E. (2020), "Thermoelastic damping nonlocal nanobeams considering dual-phase-lagging effect", J. Vib. Control, 26(11-12), 1042-1053. https://doi.org/10.1177/1077546319891334
- Caputo, M. and Mainardi, F. (1971), "A new dissipation model based on memory mechanism", Pure Appl. Geophys., 91, 147. https://doi.org/10.1007/BF00879562
- Cattaneo, C. (2011), Sulla Conduzione Del Calore, Springer, Berlin Heidelberg.
- Chen, L.Q. (2005), "Analysis and control of transverse vibrations of axially moving strings", Appl. Mech. Rev., 58(2), 91. https://doi.org/10.1115/1.1849169
- Das, S. (2011), Functional fractional calculus, Springer, Berlinm Hidelberg.
- Di Pa, M., Pirrotta, A., and Valenza, A. (2011), "Visco-elastic behavior through fractional calculus: easier method for best fitting experimental results," Mech. Mat., 43, 799-806. https://doi.org/10.1016/j.mechmat.2011.08.016
- Duwel, A., Gorman, J., Weinstein, M., Borenstein, J. and Ward, P. (2003), "Experimental study of thermoelastic damping in MEMS gyros", Sensors Actuat. A, 20, 70-75. https://doi.org/10.1016/S0924-4247(02)00318-7
- Ece, A.E., Marin, M. and Askar, S.S. (2023), "Generalized MGT heat transfer model for an electro-thermal microbeam lying on a viscous-Pasternak foundation with a laser excitation heat source", Symmetry, 15, 814. https://doi.org/10.3390/sym15040814
- Ece, M.C. and Aydogdu, M. (2007), "Nonlocal elasticity effect on vibration in-plane loaded double-walled carbon nano-tubes", Acta Mech., 190(1-4), 185-195. https://doi.org/10.1007/s00707-006-0417-5
- Eldred, L.B., Baker, W.P. and Palazotto, A.N. (2005), "Kelvin-Voigt versus fractional derivative model as constitutive relations for viscoelastic materials", AIAA J., 33, 547. https://doi.org/10.2514/3.12471
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1972), "Linear theory nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10, 425-435. https://doi.org/10.1016/0020-7225(72)90050-X
- Eringen, A.C. (1983), "On differential Eqs. of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2002), "Nonlocal Continuum Field Theories", Springer, New York, NY, USA.
- Farno, E., Baudez, J.C. and Eshtiaghi, N. (2018), "Comparison between classical Kelvin-Voigt and fractional derivative Kelvin-Voigt models in prediction of linear viscoelastic behaviour of waste activated sludge", Sci. Total Environ., 613-614, 1031-1036. https://doi.org/10.1016/j.scitotenv.2017.09.206
- Faghidian SA, Tounsi A. (2022), "Dynamic characteristics of mixture unified gradient elastic nanobeams", Facta Universitatis, Series: Mechanical Engineering, 20(3), 539-52. https://doi.org/10.22190/FUME220703035F
- Farno, E., Baudez, J.C., Parthasarathy, R. and Eshtiaghi, N. (2014), "Rheological characterisation of thermally-treated anaerobic digested sludge: impact of temperature and thermal history", Water Res., 56, 161. https://doi.org/10.1016/j.watres.2014.02.048
- Jalil, A. T., Saleh, Z. M., Imran, A. F., Yasin, Y., Ruhaima, A. A. K., Gatea, M. A., and Esmaeili, S. (2023). A size-dependent generalized thermoelasticity theory for thermoelastic damping in vibrations of nanobeam resonators. Int. J. Struct. Stab. Dyn., 23(12), 2350133.
- Green, A.E., and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stresses, 15, 253-264. https://doi.org/10.1080/01495739208946136
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969
- Grover, D., and Seth, R.K. (2018), "Viscothermoelastic microscale beam resonators based on dual-phase lagging model", Microsyst. Technol., 24, 1667-1672. https://doi.org/10.1007/s00542-017-3515-5
- Hamidi, B.A., Hosseini, S.A., Hassannejad, R., and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", Eur. Phys. J. Plus, 135, 1-20. https://doi.org/10.1140/epjp/s13360-019-00059-2
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Huang, Y., Fu, J. and Liu, A. (2019), "Dynamic instability of Euler-Bernoulli nanobeams subject to parametric excitation", Compos. B, 164, 234. https://doi.org/10.1016/j.compositesb.2018.11.088
- Jones, D. (2001), Handbook of Viscoelastic Vibration Damping, John Wiley and Sons.
- Kulkarni, R.G. (2008), "Solving sextic equations," Atlantic Electr. J. Math., 3(1), 56-60.
- Koutsoumaris, C.C. and Eptaimeros, K.G. (2021), "Nonlocal integral static problems of nanobeams resting on elastic foundation", Eur. J. Mech. A Solids, 89, 104295. https://doi.org/10.1016/j.euromechsol.2021.104295
- Kumar, R., Kaushal, S. and Vikram, D. (2022), "Dynamic mathematical model of modified couple stressermoelastic diffusion with phase-lag", Int. Appl. Mech., 58, 348. https://doi.org/10.1007/s10778-022-01160-3
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lewandowski, R., Slowik, M. and Przychodzki, M. (2017), "Parameters identification of fractional models of viscoelastic dampers and fluids", Struct. Eng. Mech., 63(2), 181-193. https://doi.org/10.12989/sem.2017.63.2.181
- Li, C., Yao, L. and Chen, W.S. (2015), "Comments on nonlocal effects in nano-cantver beams", Int. J. Eng. Sci., 87, 47-57. https://doi.org/10.1016/j.ijengsci.2014.11.006
- Lim, C.W., Li, C. and Yu, J.L. (2010), "Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach", Acta Mech. Sinica, 26(5), 755-765. https://doi.org/10.1007/s10409-010-0374-z
- Liu, N., Yang, G. and Chen, B. (2014), "Transverse vibration analysis of an axially moving beam with lumped mass", J. Vibroeng., 16(7), 3209-3217.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Mainardi, F. and Sp, G. (2011), "Creep, relaxation and viscosity properties for basic fractional models in rheology", Eur. Phys. J. Spec. Top., 193, 133-160. https://doi.org/10.1140/epjst/e2011-01387-1
- Mead, D. (1999), Passive Vibration Control, John Wiley and Sons Inc.
- Mindlin, R.D. and Eshel, N.N. (1968), "On first strain-gradient theories in linear elasticity", Int. J. Solids Struct., 4(1), 109-124. https://doi.org/10.1016/0020-7683(68)90036-X
- Oparnica, L., and Suli, E. (2020), "Well-posedness of the fractional zener wave equation for heterogeneous viscoelastic materials", Fract. Calculus Appl. Anal., 23(1), 126-166. https://doi.org/10.1515/fca-2020-0005
- Pham, Q.H., Nguyen, P.C., Tran, V.K., Lieu, Q.X. and Tran, T.T. (2023), "Modified nonlocal couple stress isogeometric approach for bending and free vibration analysis of functionally graded nanoplates", Eng. Comput., 39, 993-1018. https://doi.org/10.1007/s00366-022-01726-2
- Podlubny, I. (1999), Fractional Differential Equations, Academic Press, San Diego.
- Rahimi, Z., Sumelka, W. and Yang, X.J. (2017), "Linear and nonlinear free vibration of nano beams based on a new fractional non-local theory", Eng. Comput, 34(5), 1754-1770. https://doi.org/10.1108/EC-07-2016-0262
- Roy Choudhuri, S.K. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stresses, 30, 231-238. https://doi.org/10.1080/01495730601130919
- Shan, X. and Huang, A. (2022), "Intelligent simulation of the thermal buckling characteristics of a tapered functionally graded porosity-dependent rectangular small-scale beam", Adv. Nano Res., 12(3), 281-90. https://doi.org/10.12989/anr.2022.12.3.281
- Sumelka, W., Blaszszyk, T. and Liebold, C. (2015), "Fractional Euler-Bernoulli beams: theory, numerical study and experimental validation", Eur. J. Mech. A Solids, 54, 243-251. https://doi.org/10.1016/j.euromechsol.2015.07.002
- Thai, C.H., Nguyen-Xuan, H. and Phung-Van, P. (2022), "A size-dependent isogeometric analysis of laminated composite plates based on the nonlocal strain gradient theory," Eng. Comp., 39, 331-345. https://doi.org/10.1007/s00366-021-01559-5
- Toupin, R.A. (1964), "Theories of elasticity with couple-stress", Arch. Ration. Mech. Anal., 17(2), 85. https://doi.org/10.1007/BF00253050
- Tung, D.X. (2021), "Wave propagation in nonlocal orthotropic micropolar elastic solids", Arch. Mech., 73(3), 237-251. https://doi.org/10.24423/aom.3764
- Tzou, D.Y. (1995), "The generalized lagging response in small-scale and high-rate heating", Int. J. Heat Mass Transfer, 38(17), 3231-3240. https://doi.org/10.1016/0017-9310(95)00052-B
- Tzou, D.Y. (2015), "A unified field approach for heat conduction from macro- to micro-scales", J. Heat Trans., 117, 8-16. https://doi.org/10.1115/1.2822329
- Tzou, D.Y. (2014), Macro-to Microscale Heat Transfer: the Lagging Behavior, John Wiley & Sons, West Sussex.
- Vernotte, P. (1958), "Les paradoxes de la theorie continue de l'Eq. de la chaleur", Comput. Rendus, 246, 3154. https://doi.org/10.1016/j.ijengsci.2017.06.006
- Vincent, J.F.V. (1990), Structural Biomaterials, Princeton University Press.
- Vajjaramatti, A., Balavalad, K.B. and Ashokkumar M. (2020), "Design, simulation and analysis of nems based piezoresistive pressure sensor", Int. J. Eng. Res. Technol., 9(7), 808-811. https://doi.org/10.17577/IJERTV9IS070342
- Wu, F. and She, G.L. (2023), "Wave propagation in double nanobeams in thermal environments using the Reddy's high-order shear deformation theory", Adv. Nano Res., 14(6), 495-506. https://doi.org/10.12989/anr.2023.14.6.495
- Xia, Z.X., Zhang, G.Y., Cong, Y. and Gu, S.T. (2002), "A non-classical couple stress based Mindlin plate finite element framework for tuning band gaps of periodic composite micro plates", J. Sound Vib., 529, 116889. https://doi.org/10.1016/j.jsv.2022.116889
- Xiao, R., Yakacki, C.M., Guo, J., Frick, C.P. and Nguyen, T.D. (2016), "A predictive parameter for the shape memory behavior of thermoplastic polymers", J. Polym. Sci. B Polym. Phys., 54(14), 1405-1414. https://doi.org/10.1002/polb.23981
- Xiao, R., Sun, H., Chen, W. (2016), "An equivalence between generalized Maxwell model and fractional Zener model", Mech. Mater., 100, 148-153. https://doi.org/10.1016/j.mechmat.2016.06.016
- Yang, F., A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- W. Yang, S. Wang, W. Kang, T. Yu, and Y. Li, (2023), "A unified high-order model for size-dependent vibration of nanobeam based on nonlocal strain/stress gradient elasticity with surface effect," Int. J. Eng. Sci., 182, 103785
- Zhang, Y., Sahmani, S., Yang, Z. and Safaei, B. (2022), "Nonlocal and couple stress tensors three-dimensional nonlinear dynamical stability behavior of microshells manufactured by smart materials", Acta Mech., 233, 5377-5401. https://doi.org/10.1007/s00707-022-03394-1
- Zhao, D., Liu, J. and Wang, L. (2016), "Linear free vibration of a cantilever nanobeam with surface effects: Semi-analytical solutions", Int. J. Mech. Sci., 113, 184-195. https://doi.org/10.1016/j.ijmecsci.2016.05.001
- Zhou, H. and Li, P. (2017), "Thermoelastic damping in micro- and nanobeam resonators with non-fourier heat conduction", IEEE Sens. J., 17, 6966-6977. https://doi.org/10.1016/j.ijmecsci.2019.105211