DOI QR코드

DOI QR Code

Experimental and analytical study on improvement of flexural strength of polymer concrete filled GFRP box hybrid members

  • Ali Saribiyik (Department of Civil Engineering, Sakarya University of Applied Sciences) ;
  • Ozlem Ozturk (Department of Civil Engineering, Sakarya University of Applied Sciences) ;
  • Ferhat Aydin (Department of Civil Engineering, Sakarya University of Applied Sciences) ;
  • Yasin Onuralp Ozkilic (Department of Civil Engineering, Necmettin Erbakan University) ;
  • Emrah Madenci (Department of Civil Engineering, Necmettin Erbakan University)
  • 투고 : 2021.12.28
  • 심사 : 2024.01.23
  • 발행 : 2024.02.25

초록

The usage of fiber-reinforced polymer materials increases in the construction sector due to their advantages in terms of high mechanical strength, lightness, corrosion resistance, low density and high strength/density ratio, low maintenance and painting needs, and high workability. In this study, it is aimed to improve mechanical properties of GFRP box profiles, produced by pultrusion method, by filling the polymer concrete into them. Within the scope of study, hybrid use of polymer concrete produced with GFRP box profiles was investigated. Hybrid pressure and bending specimens were produced by filling polymer concrete (polyester resin manufactured with natural sand and stone chips) into GFRP box profiles having different cross-sections and dimensions. Behavior of the produced hybrid members was investigated under bending and compression tests. Hollow GFRPxx profiles, polymer-filled hybrid members, and nominative polymeric concrete specimens were tested as well. The behavior of the specimens under pressure and bending tests, and their load bearing capacities, deformations and changes in toughness were observed. According to the test results; It was deduced that hybrid design has many advantages over its component materials as well as superior physical and mechanical properties.

키워드

과제정보

The experimental part of the research described in this paper was financially supported by the Sakarya University of Applied Sciences, Scientific Research Project (BAP) Project No: 2017-50-01-071.

참고문헌

  1. Afshin, H., Shirazi, M.R.N. and Abedi, K. (2019), "Experimental and numerical study about seismic retrofitting of corrosion-damaged reinforced concrete columns of bridge using combination of FRP wrapping and steel profiles", Steel Compos. Struct., 30(3), 231-251. https://doi.org/10.12989/scs.2019.30.3.231.
  2. Ahangarnazhad, B.H., Pourbaba, M. and Afkar, A. (2020), "Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)", Steel Compos. Struct., 35(4), 463-474. https://doi.org/10.12989/scs.2020.35.4.463.
  3. Aksoylu, C., Ozkilic, Y. O., Madenci, E. and Safonov, A. (2022), "Compressive behavior of pultruded GFRP boxes with concentric openings strengthened by different composite wrappings", Polymers, 14(19), 4095.
  4. Alajarmeh, O., Zeng, X., Aravinthan, T., Shelley, T., Alhawamdeh, M., Mohammed, A., Nicol, L., Vedernikov, A., Safonov, A. and Schubel, P. (2021), "Compressive behaviour of hollow box pultruded FRP columns with continuous-wound fibres", Thin-Wall. Struct., 168, 108300. https://doi.org/10.1016/j.tws.2021.108300.
  5. Alzeebaree, R., Gulsan, M.E., Nis, A., Mohammedameen, A. and Cevik, A. (2018), "Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks", Steel Compos. Struct., 29(2), 201-218. https://doi.org/10.12989/scs.2018.29.2.201.
  6. Asghar, M., Javed, M.F., Khan, M.I., Abdullaev, S., Awwad, F.A. and Ismail, E.A. (2023), "Empirical models for compressive and tensile strength of basalt fiber reinforced concrete", Sci. Reports, 13(1), 19909.
  7. Aydin, F. and Saribiyik, M. (2013), "Investigation of flexural behaviors of hybrid beams formed with GFRP box section and concrete", Construct. Build. Mater., 41, 563-569. https://doi.org/10.1016/j.conbuildmat.2012.12.060.
  8. Chen, B. and Wang, L. (2019), "Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression", Steel Compos. Struct., 32(1), 59-66. https://doi.org/10.12989/scs.2019.32.1.059.
  9. Correia, J., Branco, F. and Ferreira, J. (2005), "Structural Behaviour of GFRP-Concrete hybrid beams", Composites Construction-Third International Conference, Lyon, France.
  10. Deskovic, N., Meier, U. and Triantafillou, T.C. (1995), "Innovative design of FRP combined with concrete: long-term behavior", J. Struct. Eng., 121(7), 1079-1089. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:7(1079).
  11. Ding, H., Gong, P., Chen, W., Peng, Z., Bu, H., Zhang, M. and Schroers, J. (2023), "Achieving strength-ductility synergy in metallic glasses via electric current-enhanced structural fluctuations", Int. J. Plasticity, 169, 103711. https://doi.org/10.1016/j.ijplas.2023.103711.
  12. Dundar, C., Tanrikulu, A.K. and Frosch, R.J. (2015), "Prediction of load-deflection behavior of multi-span FRP and steel reinforced concrete beams", Compos. Struct., 132, 680-693. https://doi.org/10.1016/j.compstruct.2015.06.018.
  13. Faddoul, J., Rahme, P., Guines, D. and Leotoing, L. (2023), "Thermo-visco mechanical behavior of glass fiber reinforced thermoplastic composite", J. Compos. Mater., 57(23), 3741-3754. https://doi.org/10.1177/00219983231192.
  14. Fam, A., Cole, B. and Mandal, S. (2007), "Composite tubes as an alternative to steel spirals for concrete members in bending and shear", Construct. Build. Mater., 21(2), 347-355. https://doi.org/10.1016/j.conbuildmat.2005.08.016.
  15. Fam, A., Schnerch, D. and Rizkalla, S. (2003), "Rectangular FRP tubes filled with concrete for beam and column applications", Fibre-Reinforced Polymer Reinforcement Concrete Structures, 2, 685-694. https://doi.org/10.1142/9789812704863_0064.
  16. Fam, A.Z. and Rizkalla, S.H. (2002), "Flexural behavior of concrete-filled fiber-reinforced polymer circular tubes", J. Compos. Construct., 6(2), 123-132. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(123).
  17. Gan, J., Li, F., Li, K., Li, E. and Li, B. (2023), "Dynamic failure of 3D printed negative-stiffness meta-sandwich structures under repeated impact loadings", Compos. Sci. Technol., 234, 109928. https://doi.org/10.1016/j.compscitech.2023.109928.
  18. Gao, C., Huang, L., Yan, L., Kasal, B. and Li, W. (2016), "Behavior of glass and carbon FRP tube encased recycled aggregate concrete with recycled clay brick aggregate", Compos. Struct., 155, 245-254. https://doi.org/10.1016/j.compstruct.2016.08.021.
  19. Ge, W., Zhang, J., Cao, D. and Tu, Y. (2015), "Flexural behaviors of hybrid concrete beams reinforced with BFRP bars and steel bars", Construct. Build. Mater., 87, 28-37. https://doi.org/10.1016/j.conbuildmat.2015.03.113.
  20. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2021), "Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete", Eng. Struct., 244, 112790. https://doi.org/10.1016/j.engstruct.2021.112790.
  21. Gemi, L., Madenci, E., Ozkilic, Y. O., Yazman, S. and Safonov, A. (2022), "Effect of fiber wrapping on bending behavior of reinforced concrete filled pultruded GFRP composite hybrid beams", Polymers, 14(18), 3740.
  22. Hadi, M.N., Almalome, M.H., Yu, T. and Rickards, W.A. (2020), "Flexural behavior of beams reinforced with either steel bars, molded or pultruded GFRP grating", Steel Compos. Struct., 34(1), 17-34. https://doi.org/10.12989/scs.2020.34.1.017.
  23. Hakeem, I.Y., Ozkilic, Y.O., Bahrami, A., Aksoylu, C., Madenci, E., Asyraf, M.R.M. and Fayed, S. (2024), "Crashworthiness performance of filament wound GFRP composite pipes depending on winding angle and number of layers", Case Studies Construct. Mater., 20, e02683.
  24. Huang, H., Yuan, Y., Zhang, W. and Zhu, L. (2021), "Property assessment of high-performance concrete containing three types of fibers", Int. J. Concrete Struct. Mater., 15(1), 39. https://doi.org/10.1186/s40069-021-00476-7.
  25. Huang, T., Mao, Z., Chang, L., Huang, X. and Cai, Z. (2023), "Study of impact resistance based on porcupine quills bionic thin-walled structure", J. Bionic Eng., 20(5), 1942-1955. https://doi.org/10.1007/s42235-023-00380-8.
  26. Hulatt, J., Hollaway, L. and Thorne, A. (2003), "Short term testing of hybrid T beam made of new prepreg material", J. Compos. Construct., 7(2), 135-144. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:2(135).
  27. Issa, C.A., Chami, P. and Saad, G. (2009), "Compressive strength of concrete cylinders with variable widths CFRP wraps: Experimental study and numerical modeling", Construct. Build. Mater., 23(6), 2306-2318. https://doi.org/10.1016/j.conbuildmat.2008.11.009.
  28. Kara, I.F., Ashour, A.F. and Koroglu, M.A. (2015), "Flexural behavior of hybrid FRP/steel reinforced concrete beams", Compos. Struct., 129, 111-121. https://doi.org/10.1016/j.compstruct.2015.03.073.
  29. Karam, G.N. and Tabbara, M.R. (2020), "Localization and confinement efficiency in carbon fiber-reinforced plastic-confined materials", ACI Struct. J., 117(6), 7-15. https://doi.org/10.14359/51728070.
  30. Karam, G. and Tabbara, M. (2005), "Confinement effectiveness in rectangular concrete columns with fiber reinforced polymer wraps", J. Compos. Construct., 9(5), 388-396. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(388).
  31. Keykha, A.H. (2017), "Numerical investigation of SHS steel beam-columns strengthened using CFRP composite", Steel Compos. Struct., 25(5), 593-601. https://doi.org/10.12989/scs.2017.25.5.593.
  32. Kobeissi, A., Rahme, P., Leotoing, L. and Guines, D. (2020), "Strength characterization of glass/epoxy plain weave composite under different biaxial loading ratios", J. Compos. Mater., 54(19), 2549-2563. https://doi.org/10.1177/0021998319899135
  33. Korotkov, R., Vedernikov, A., Gusev, S., Alajarmeh, O., Akhatov, I. and Safonov, A. (2021), "Shape memory behavior of unidirectional pultruded laminate", Compos. Part A: Appl. Sci. Manufact., 150, 106609. https://doi.org/10.1016/j.compositesa.2021.106609.
  34. Kumar, S., Dang, R., Manna, A., Dhiman, N.K., Sharma, S., Dwivedi, S.P. and Abbas, M. (2023), "Optimization of chemical treatment process parameters for enhancement of mechanical properties of Kenaf fiber-reinforced polylactic acid composites: a comparative study of mechanical, morphological and microstructural analysis", J. Mater. Res. Technol., 26, 8366-8387. https://doi.org/10.1016/j.jmrt.2023.09.157
  35. Lezgy-Nazargah, M., Dezhangah, M. and Sepehrinia, M. (2018), "The effects of different FRP/concrete bond-slip laws on the 3D nonlinear FE modeling of retrofitted RC beams-A sensitivity analysis", Steel Compos. Struct., 26(3), 347-360. https://doi.org/10.12989/scs.2018.26.3.347.
  36. Li, S., Khan, M.I., Khan, S.U., Abdullaev, S., Mohamed, M.M.I. and Amjad, M.S. (2023), "Effectiveness of melting phenomenon in two phase dusty carbon nanotubes (Nanomaterials) flow of Eyring-Powell fluid: Heat transfer analysis", Chinese J. Phys., 86, 160-169. https://doi.org/10.1016/j.cjph.2023.09.013
  37. Madenci, E. and Ozkilic, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157. https://doi.org/10.12989/scs.2021.40.2.157.
  38. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020a), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.
  39. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020b), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  40. Madenci, E., Ozkilic, Y.O. and Lokman, G. (2020c), "Theoretical investigation on static analysis of pultruded GFRP composite beams", Academic Platform J. Eng. Sci., 8(3), 483-490. https://doi.org/10.21541/apjes.734770.
  41. Madenci, E., Ozkilic, Y.O., Aksoylu, C. and Safonov, A. (2022a), "The effects of eccentric web openings on the compressive performance of pultruded GFRP boxes wrapped with GFRP and CFRP sheets", Polymers, 14(21), 4567.
  42. Madenci, E., Fayed, S., Mansour, W. and Ozkilic, Y.O. (2022b), "Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression", Steel Compos. Struct., 45(5), 653-663.
  43. Madenci, E., Ozkilic, Y.O., Aksoylu, C., Asyraf, M.R.M., Syamsir, A., Supian, A.B.M. and Elizaveta, B. (2023a), "Experimental and analytical investigation of flexural behavior of carbon nanotube reinforced textile based composites", Materials, 16(6), 2222.
  44. Madenci, E., Ozkilic, Y.O., Hakamy, A. and Tounsi, A. (2023b), "Experimental tensile test and micro-mechanic investigation on carbon nanotube reinforced carbon fiber composite beams", Adv. Nano Res., 14(5), 443-450.
  45. Madenci, E., Ozkilic, Y. O., Aksoylu, C., Asyraf, M.R.M., Syamsir, A., Supian, A.B.M. and Mamaev, N. (2023c), "Buckling analysis of CNT-reinforced polymer composite beam using experimental and analytical methods", Materials, 16(2), 614.
  46. Nunes, F., Correia, J.R. and Silvestre, N. (2016), "Structural behavior of hybrid FRP pultruded beams: Experimental, numerical and analytical studies", Thin-Wall. Struct., 106, 201-217. https://doi.org/10.1016/j.tws.2016.05.004.
  47. Ozbakkaloglu, T. and Oehlers, D.J. (2008), "Manufacture and testing of a novel FRP tube confinement system", Eng. Struct., 30(9), 2448-2459. https://doi.org/10.1016/j.engstruct.2008.01.014.
  48. Ozkilic, Y.O., Gemi, L., Madenci, E. and Aksoylu, C. (2022a), "Effects of stirrup spacing on shear performance of hybrid composite beams produced by pultruded GFRP profile infilled with reinforced concrete", Archives Civil Mech. Eng., 23(1), 36.
  49. Ozkilic, Y.O., Gemi, L., Madenci, E., Aksoylu, C. and Kalkan, I. (2022b), "Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement", Steel Compos. Struct., 45(2), 193-204.
  50. Prasanthi, P.P., Kumar, M.N., Chowdary, M.S., Madhav, V.V., Saxena, K.K., Mohammed, K.A. and Eldin, S.M. (2023), "Mechanical properties of carbon fiber reinforced with carbon nanotubes and graphene filled epoxy composites: Experimental and numerical investigations", Mater. Res. Express, 10(2), 025308.
  51. Prashob, P., Shashikala, A. and Somasundaran, T. (2017), "Behaviour of carbon fiber reinforced polymer strengthened tubular joints", Steel Compos. Struct., 24(4), 383-390. https://doi.org/10.12989/scs.2017.24.4.383.
  52. Rahme, P., Moussa, P., Lachaud, F. and Landon, Y. (2020), "Effect of adding a woven glass ply at the exit of the hole of CFRP laminates on delamination during drilling", Compos. Part A: Appl. Sci. Manufact., 129.
  53. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press
  54. Ribeiro, M., Tavares, C., Ferreira, A.J. and Marques, A.T. (2002), "Static flexural performance of GFRP-polymer concrete hybrid beams", Key Eng. Mater., 230-232, 148-151. https://doi.org/10.4028/www.scientific.net/KEM.230-232.148.
  55. Sehar, B., Waris, A., Gilani, S.O., Ansari, U., Mushtaq, S., Khan, N.B. and Tag-ElDin, E.S.M. (2022), "The impact of laminations on the mechanical strength of carbon-fiber composites for prosthetic foot fabrication", Crystals, 12(10), 1429. https://www.mdpi.com/2073-4352/12/10/1429. 10/1429
  56. Sharma, H., Kumar, A., Rana, S., Sahoo, N.G., Jamil, M., Kumar, R. and Abbas, M. (2023), "Critical review on advancements on the fiber-reinforced composites: Role of fiber/matrix modification on the performance of the fibrous composites", J. Mater. Res. Technol., https://doi.org/10.1016/j.jmrt.2023.08.036.
  57. Shayanfar, J. and Bengar, H.A. (2018), "A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints", Steel Compos. Struct., 27(1), 49-74. https://doi.org/10.12989/scs.2018.27.1.049.
  58. Sliseris, J., Yan, L. and Kasal, B. (2016), "Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites", Compos. Part B: Eng., 89, 143-154. https://doi.org/10.1016/j.compositesb.2015.11.038.
  59. Syamsir, A., Ean, L.W., Asyraf, M.R.M., Supian, A.B.M., Madenci, E., Ozkilic, Y.O. and Aksoylu, C. (2023), "Recent advances of GFRP composite cross arms in energy transmission tower: A short review on design improvements and mechanical properties", Materials, 16(7), 2778.
  60. Tayeb, B., Daouadji, T.H., Abderezak, R. and Tounsi, A. (2021), "Structural bonding for civil engineering structures: New model of composite I-steel-concrete beam strengthened with CFRP plate", Steel Compos. Struct., 41(3), 417-435. https://doi.org/10.12989/scs.2021.41.3.417.
  61. Tong, Z., Song, X. and Huang, Q. (2018), "Deflection calculation method on GFRP-concrete-steel composite beam", Steel Compos. Struct., 26(5), 595-606. https://doi.org/10.12989/scs.2018.26.5.595.
  62. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I. (2020), "Pultruded materials and structures: A review", J. Compos. Mater., 54(26), 4081-4117. https://doi.org/10.1177/0021998320922894.
  63. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I. (2021), "Modeling spring-in of l-shaped structural profiles pultruded at different pulling speeds", Polymers. 13(16), 2748. https://doi.org/10.3390/polym13162748.
  64. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433.
  65. Yan, L., Chouw, N. and Kasal, B. (2016), "Experimental study and numerical simulation on bond between FFRP and CFRC components", J. Reinforced Plastics Compos., 36(4), 305-320. https://doi.org/10.1177/0731684416683453.
  66. Yan, L., Su, S. and Chouw, N. (2015), "Microstructure, flexural properties and durability of coir fibre reinforced concrete beams externally strengthened with flax FRP composites", Compos. Part B: Eng., 80, 343-354. https://doi.org/10.1016/j.compositesb.2015.06.011.
  67. Yang, W.-r., He, X.-j., Dai, L., Zhao, X. and Shen, F. (2016), "Fracture performance of GFRP bars embedded in concrete beams with cracks in an alkaline environment", J. Compos. Construct., 20(6), 04016040. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000688.
  68. Yang, Y., Xue, Y., Yu, Y., Liu, R. and Ke, S. (2017), "Study of the design and mechanical performance of a GFRP-concrete composite deck", Steel Compos. Struct., 24(6), 679-688. https://doi.org/10.12989/scs.2017.24.6.679.
  69. Yang, C., Yin, C., Wu, Y., Zhou, Q. and Liu, X. (2023), "Atomic insights into the deformation mechanism of an amorphous wrapped nanolamellar heterostructure and its effect on self-lubrication", J. Mater. Res. Technol., 26, 4206-4218. https://doi.org/10.1016/j.jmrt.2023.08.215.
  70. Yin, P., Huang, L., Yan, L. and Zhu, D. (2016), "Compressive behavior of concrete confined by CFRP and transverse spiral reinforcement. Part A: experimental study", Mater. Struct., 49(3), 1001-1011. https://doi.org/10.1617/s11527-015-0554-1.
  71. Zhang, P., Wu, G., Zhu, H., Meng, S.-p. and Wu, Z.-s. (2014), "Mechanical performance of the wet-bond interface between FRP plates and cast-in-place concrete", J. Compos. Construct., 18(6), 04014016. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000472.
  72. Zhang, C., Khorshidi, H., Najafi, E. and Ghasemi, M. (2023b), "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Cleaner Product., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390.
  73. Zhang, W., Kang, S., Liu, X., Lin, B. and Huang, Y. (2023a), "Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate", J. Build. Eng., 71, 106522. https://doi.org/10.1016/j.jobe.2023.106522.