Acknowledgement
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/12/44.
References
- Abo-Dahab, S.M., Abouelregal, A.E. and Marin, M. (2020), "Generalized thermoelastic functionally graded on a thin slim strip non-gaussian laser beam", Symmetry, 12(7), 1094, https://doi.org/10.3390/sym12071094.
- Allahyari, E. and Asgari, M. (2019), "Thermo-mechanical vibration of double-layer graphene nanosheets in elastic medium considering surface effects; developing a nonlocal third order shear deformation theory", Eur. J. Mech. A/Solids, 75, 307-321. https://doi.org/10.1016/j.euromechsol.2019.01.022.
- Analooei, H.R., Azhari, M. and Salehipour, H. (2021), "Thermoelectro-mechanical vibration and buckling analysis of quadrilateral and triangular nanoplates with the nonlocal finite strip method", Mech. Based Des. Struct. Mach., 1684-1704. https://doi.org/10.1080/15397734.2021.1875331.
- Ansari, R., Arash, B. and Rouhi, H. (2011), "Nanoscale vibration analysis of embedded multi-layered graphene sheets under various boundary conditions", Comput. Mater. Sci., 50(11), 3091-3100. https://doi.org/10.1016/j.commatsci.2011.05.032.
- Arash, B. and Wang, Q. (2011), "Vibration of single-and doublelayered graphene sheets", J. Nanotechnol. Eng. Med., 2(1), https://doi.org/10.1115/1.4003353.
- Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
- Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperaturedependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
- Behshad, A., Shokravi, M., Shafiei Alavijeh, A. and Karami, H. (2023), "Elastic wave propagation analysis in sandwich nanoplate assuming size effects", Steel Compos. Struct., 47(1), 71-77, https://doi.org/10.12989/scs.2023.47.1.071.
- Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247X(71)90110-7.
- Beni, A.A. and Malekzadeh, P. (2012), "Nonlocal free vibration of orthotropic non-prismatic skew nanoplates", Compos. Struct., 94(11), 3215-3222. https://doi.org/10.1016/j.compstruct.2012.04.013.
- Eringen, A.C. (1987), "Theory of nonlocal elasticity and some applications", Res. Mech., 21(4), 313-342.
- Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S. and Ahmadi Dastjerdi, A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core", Steel Compos. Struct., 33(6), 891-906. https://doi.org/10.12989/scs.2019.33.6.891.
- Fan, F., Lei, B., Sahmani, S. and Safaei, B. (2020), "On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates", Thin-Walled Struct., 154, 106841, https://doi.org/10.1016/j.tws.2020.106841.
- Hosseini, S., Mehrabani, H., Ahmadi-savadkoohi, A., Hashemi, S.H., Mehrabani, H. and Ahmadi-savadkoohi, A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium", Compos. Part B Eng., 78, 377-383, https://doi.org/10.1016/j.compositesb.2015.04.008.
- Jalaei, M.H. and Arani, A.G. (2018), "Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation", Phys. B Condens. Matter., 530, 222-235. https://doi.org/10.1016/j.physb.2017.11.049.
- Jalaei, M.H. and Arani, A.G. (2018), "Size-dependent static and dynamic responses of embedded double-layered graphene sheets under longitudinal magnetic field with arbitrary boundary conditions", Compos. Part B Eng., 142, 117-130. https://doi.org/10.1016/j.compositesb.2017.12.053.
- Jalali, S.K., Naei, M.H. and Pugno, N.M. (2015), "Graphenebased resonant sensors for detection of ultra-fine nanoparticles: Molecular dynamics and nonlocal elasticity investigations", Nano Br. Reports Rev., 10(2), https://doi.org/10.1142/S1793292015500241.
- Jamalpoor, A. and Kiani, A. (2017), "Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects", Appl. Phys. A., 123(3), https://doi.org/10.1007/s00339-017-0784-x.
- Karimi, M. and Shahidi, A.R. (2019), "A general comparison the surface layer degree on the out-of-phase and in-phase vibration behavior of a skew double-layer magneto-electro-thermo-elastic nanoplate", Appl. Phys. A., 125(2), https://doi.org/10.1007/s00339-018-2168-2.
- Karlicic, D., Adhikari, S., Murmu, T. and Cajic, M. (2014), "Exact closed-form solution for non-local vibration and biaxial buckling of bonded multi-nanoplate system", Compos. Part B Eng., 66, 328-339. https://doi.org/10.1016/j.compositesb.2014.05.029.
- Khaniki, H.B. and Hosseini-Hashemi, S. (2017), "Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle", Int. J. Eng. Sci., 115, 51-72. https://doi.org/10.1016/j.ijengsci.2017.02.005.
- Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
- Liang, D., Wu, Q., Lu, X. and Tahouneh, V. (2020), "Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers", Steel Compos. Struct., 36(1), 47-62, https://doi.org/10.12989/scs.2020.36.1.047.
- Liew, K.M., Han, J.B. and Xiao, Z.M. (1997), "Vibration analysis of circular mindlin plates using the differential quadrature method", J. Sound Vib., 205(5), 617-630. https://doi.org/10.1006/jsvi.1997.1035.
- Makwana, M. and Patel, A.M. (2023), "Nanoresonator vibrational behaviour analysis of single-and double-layer graphene with atomic vacancy and pinhole defects", J. Mol. Model., 29(5), https://doi.org/10.1007/s00894-023-05546-z.
- Malekzadeh, P. and Karami, G. (2005), "Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates", Eng. Struct., 27(10), 1563-1574. https://doi.org/10.1016/j.engstruct.2005.03.017.
- Malekzadeh, P. and Zarei A.R. (2014), "Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers", Thin-Wall. Struct., 82, 221-232. https://doi.org/10.1016/j.tws.2014.04.016.
- Malekzadeh, P., Haghighi, M.R.G. and Shojaee, M. (2014), "Nonlinear free vibration of skew nanoplates with surface and small scale effects", Thin-Wall. Struct., 78, 48-56. https://doi.org/10.1016/j.tws.2013.10.027.
- Malekzadeh, P., Setoodeh, A.A.R., Beni, A.A. and Alibeygi, A. (2011), "Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates", Compos. Struct., 93(7), 1631-1639. https://doi.org/10.1016/j.compstruct.2011.01.008.
- Mamoon, A.A.A.J., Ridha, A.A., Raad, M.F. and Nadhim M.F. (2023), "Nonlinear dynamic characteristic of sandwich graphene platelet reinforced plates with square honeycomb core", Steel Compos. Struct., 46(5), 659-667. https://doi.org/10.12989/scs.2023.46.5.659.
- Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419.
- Marin, M. and Florea, O. (2014), "On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies", An. St. Univ. Ovidius Constanta, 22(1), 169-188. https://doi.org/10.2478/auom-2014-0014
- Mazur, O. and Awrejcewicz, J. (2022), "The nonlocal elasticity theory for geometrically nonlinear vibrations of double-layer nanoplate systems in magnetic field", Meccanica, 57(11), 2835-2847. https://doi.org/10.1007/s11012-022-01602-9.
- Murmu, T. and Adhikari, S. (2011), "Nonlocal vibration of bonded double-nanoplate-systems", Compos. Part B Eng., 42(7), 1901-1911. https://doi.org/10.1016/j.compositesb.2011.06.009.
- Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Pang, M., Fang, Y. and Zhang, Y.Q. (2021), "Free and forced vibrations of double-layered Viscoelastic Orthotropic Graphene Sheets With a High-Order Surface Stress Effect", J. Appl. Mech. Tech. Phys., 62(1), 129-138, https://doi.org/10.1134/S0021894421010168.
- Pouresmaeeli, S., Fazelzadeh, A. and Ghavanloo, E. (2012), "Exact solution for nonlocal vibration of double-orthotropic nanoplates embedded in elastic medium", Compos. Part B Eng., 43(8), 3384-3390. https://doi.org/10.1016/j.compositesb.2012.01.046.
- Radic, N. and Jeremic, D. (2017), "A comprehensive study on vibration and buckling of orthotropic double-layered graphene sheets under hygrothermal loading with different boundary conditions", Compos. Part B Eng., 128, 182-199. https://doi.org/10.1016/j.compositesb.2017.07.019.
- Rajabi, J. and Mohammadimehr, M. (2019), "Hydro-thermomechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations", Steel Compos. Struct., 33(4), 509-523. https://doi.org/10.12989/scs.2019.33.4.509.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
- Saidi, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221.
- Sarrami-Foroushani, S. and Azhari, M. (2014), "Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects", Phys. E Low-Dimensional Syst. Nanostruct., 57, 83-95. https://doi.org/10.1016/j.physe.2013.11.002.
- Shahabodini, A., Ansari, R. and Rouhi, H. (2020), "A threedimensional surface elastic model for vibration analysis of functionally graded arbitrary straight-sided quadrilateral nanoplates under thermal environment", J. Mech., 37(September), 72-99. https://doi.org/10.1093/jom/ufaa011.
- Sharma, K. and Marin, M. (2013), "Effect of distinct conductive a thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space", Sci. Bull., Series A Appl. Mathem. Phys., 75(2), 121-132.
- Shenas, A.G., Ziaee, S. and Malekzadeh, P. "Nonlinear free vibration of rotating FG trapezoidal microplates in thermal environment", Thin-Wall. Struct., 170, https://doi.org/10.1016/j.tws.2021.108614.
- Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2018), "The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic", Steel Comp. Struct., 29(5), 647-657, https://doi.org/10.12989/scs.2018.29.5.647.
- Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2019), "Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory", Steel Comp. Struct., 33(5), 717-727. https://doi.org/10.12989/scs.2019.33.5.717.
- Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2020), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Comp. Struct., 34(2), 261-277. https://doi.org/10.12989/scs.2020.34.2.261.
- Tornabene, F. and Viola, E. (2008), "2-D solution for free vibrations of parabolic shells using generalized differential quadrature method", Eur. J. Mech., 27(6), 1001-1025. https://doi.org/10.1016/j.euromechsol.2007.12.007.
- Tornabene, F. and Viola, E. (2008), "2-D solution for free vibrations of parabolic shells using generalized differential quadrature method", Eur. J. Mech., 27(6), 1001-1025. https://doi.org/10.1016/j.euromechsol.2007.12.007.
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Composite Part B., 115, 449-476. https://doi.org/10.1016/j.compositesb.2016.07.011.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016.
- Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
- Wu, Z., Zhang, Y., Hu, F., Gao, Q., Xu, X. and Zheng, R. (2018), "Vibration analysis of bilayered graphene sheets for building materials in thermal environments based on the element-free method", J. Nanomater., 2018.
- Yuan, Y., Zhao, K., Sahmani, S. and Safaei, B. (2020), "Sizedependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes", Appl. Math. Mech., 41, 587-604. https://doi.org/10.1007/s10483-020-2600-6.
- Zamani, M., Fallah, A. and Aghdam, M.M. (2012), "Free vibration analysis of moderately thick trapezoidal symmetrically laminated plates with various combinations of boundary conditions", Eur. J. Mech. A/Solids, 36, 204-212. https://doi.org/10.1016/j.euromechsol.2012.03.004.
- Zhang, L.W., Zhang, Y. and Liew, K.M. (2017), "Vibration analysis of quadrilateral graphene sheets subjected to an in-plane magnetic field based on nonlocal elasticity theory", Compos. Part B Eng., 118, 96-103. https://doi.org/10.1016/j.compositesb.2017.03.017.