DOI QR코드

DOI QR Code

Free vibration analysis of trapezoidal Double Layered plates embedded with viscoelastic medium for general boundary conditions using differential quadrature method

  • S. Abdul Ameer (Department of Automobile Engineering College of Engineering/Al-Musayab University of Babylon) ;
  • Abbas Hameed Abdul Hussein (Ahl Al Bayt University Kerbala) ;
  • Mohammed H. Mahdi (College of pharmacy, Ahl Al Bayt University Kerbala) ;
  • Fahmy Gad Elsaid (Biology Department, College of Science, King Khalid University) ;
  • V. Tahouneh (School of Mechanical Engineering, University of Tehran)
  • Received : 2023.09.15
  • Accepted : 2024.01.24
  • Published : 2024.02.25

Abstract

This paper studies the free vibration behavior of trapezoidal shaped coupled double-layered graphene sheets (DLGS) system using first-order shear deformation theory (FSDT) and incorporating nonlocal elasticity theory. Two nanoplates are assumed to be bonded by an interlayer van der walls force and surrounded by an external kelvin-voight viscoelastic medium. The governing equations together with related boundary condition are discretized using a mapping-differential quadrature method (DQM) in the spatial domain. Then the natural frequency of the system is obtained by solving the eigen value matrix equation. The validity of the current study is evaluated by comparing its numerical results with those available in the literature and then a parametric study is thoroughly performed, concentrating on the series effects of angles and aspect ratio of GS, viscoelastic medium, and nonlocal parameter. The model is used to study the vibration of DLGS for two typical deformation modes, the in-phase and out-of-phase vibrations, which are investigated. Numerical results indicate that due to Increasing the damping parameter of the viscoelastic medium has reduced the frequency of both modes and this medium has been able to overdamped the oscillations and by increasing stiffness parameters both in-phase and out-of-phase vibration frequencies increased.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/12/44.

References

  1. Abo-Dahab, S.M., Abouelregal, A.E. and Marin, M. (2020), "Generalized thermoelastic functionally graded on a thin slim strip non-gaussian laser beam", Symmetry, 12(7), 1094, https://doi.org/10.3390/sym12071094.
  2. Allahyari, E. and Asgari, M. (2019), "Thermo-mechanical vibration of double-layer graphene nanosheets in elastic medium considering surface effects; developing a nonlocal third order shear deformation theory", Eur. J. Mech. A/Solids, 75, 307-321. https://doi.org/10.1016/j.euromechsol.2019.01.022.
  3. Analooei, H.R., Azhari, M. and Salehipour, H. (2021), "Thermoelectro-mechanical vibration and buckling analysis of quadrilateral and triangular nanoplates with the nonlocal finite strip method", Mech. Based Des. Struct. Mach., 1684-1704. https://doi.org/10.1080/15397734.2021.1875331.
  4. Ansari, R., Arash, B. and Rouhi, H. (2011), "Nanoscale vibration analysis of embedded multi-layered graphene sheets under various boundary conditions", Comput. Mater. Sci., 50(11), 3091-3100. https://doi.org/10.1016/j.commatsci.2011.05.032.
  5. Arash, B. and Wang, Q. (2011), "Vibration of single-and doublelayered graphene sheets", J. Nanotechnol. Eng. Med., 2(1), https://doi.org/10.1115/1.4003353.
  6. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
  7. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperaturedependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
  8. Behshad, A., Shokravi, M., Shafiei Alavijeh, A. and Karami, H. (2023), "Elastic wave propagation analysis in sandwich nanoplate assuming size effects", Steel Compos. Struct., 47(1), 71-77, https://doi.org/10.12989/scs.2023.47.1.071.
  9. Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247X(71)90110-7.
  10. Beni, A.A. and Malekzadeh, P. (2012), "Nonlocal free vibration of orthotropic non-prismatic skew nanoplates", Compos. Struct., 94(11), 3215-3222. https://doi.org/10.1016/j.compstruct.2012.04.013.
  11. Eringen, A.C. (1987), "Theory of nonlocal elasticity and some applications", Res. Mech., 21(4), 313-342.
  12. Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S. and Ahmadi Dastjerdi, A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core", Steel Compos. Struct., 33(6), 891-906. https://doi.org/10.12989/scs.2019.33.6.891.
  13. Fan, F., Lei, B., Sahmani, S. and Safaei, B. (2020), "On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates", Thin-Walled Struct., 154, 106841, https://doi.org/10.1016/j.tws.2020.106841.
  14. Hosseini, S., Mehrabani, H., Ahmadi-savadkoohi, A., Hashemi, S.H., Mehrabani, H. and Ahmadi-savadkoohi, A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium", Compos. Part B Eng., 78, 377-383, https://doi.org/10.1016/j.compositesb.2015.04.008.
  15. Jalaei, M.H. and Arani, A.G. (2018), "Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation", Phys. B Condens. Matter., 530, 222-235. https://doi.org/10.1016/j.physb.2017.11.049.
  16. Jalaei, M.H. and Arani, A.G. (2018), "Size-dependent static and dynamic responses of embedded double-layered graphene sheets under longitudinal magnetic field with arbitrary boundary conditions", Compos. Part B Eng., 142, 117-130. https://doi.org/10.1016/j.compositesb.2017.12.053.
  17. Jalali, S.K., Naei, M.H. and Pugno, N.M. (2015), "Graphenebased resonant sensors for detection of ultra-fine nanoparticles: Molecular dynamics and nonlocal elasticity investigations", Nano Br. Reports Rev., 10(2), https://doi.org/10.1142/S1793292015500241.
  18. Jamalpoor, A. and Kiani, A. (2017), "Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects", Appl. Phys. A., 123(3), https://doi.org/10.1007/s00339-017-0784-x.
  19. Karimi, M. and Shahidi, A.R. (2019), "A general comparison the surface layer degree on the out-of-phase and in-phase vibration behavior of a skew double-layer magneto-electro-thermo-elastic nanoplate", Appl. Phys. A., 125(2), https://doi.org/10.1007/s00339-018-2168-2.
  20. Karlicic, D., Adhikari, S., Murmu, T. and Cajic, M. (2014), "Exact closed-form solution for non-local vibration and biaxial buckling of bonded multi-nanoplate system", Compos. Part B Eng., 66, 328-339. https://doi.org/10.1016/j.compositesb.2014.05.029.
  21. Khaniki, H.B. and Hosseini-Hashemi, S. (2017), "Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle", Int. J. Eng. Sci., 115, 51-72. https://doi.org/10.1016/j.ijengsci.2017.02.005.
  22. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  23. Liang, D., Wu, Q., Lu, X. and Tahouneh, V. (2020), "Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers", Steel Compos. Struct., 36(1), 47-62, https://doi.org/10.12989/scs.2020.36.1.047.
  24. Liew, K.M., Han, J.B. and Xiao, Z.M. (1997), "Vibration analysis of circular mindlin plates using the differential quadrature method", J. Sound Vib., 205(5), 617-630. https://doi.org/10.1006/jsvi.1997.1035.
  25. Makwana, M. and Patel, A.M. (2023), "Nanoresonator vibrational behaviour analysis of single-and double-layer graphene with atomic vacancy and pinhole defects", J. Mol. Model., 29(5), https://doi.org/10.1007/s00894-023-05546-z.
  26. Malekzadeh, P. and Karami, G. (2005), "Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates", Eng. Struct., 27(10), 1563-1574. https://doi.org/10.1016/j.engstruct.2005.03.017.
  27. Malekzadeh, P. and Zarei A.R. (2014), "Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers", Thin-Wall. Struct., 82, 221-232. https://doi.org/10.1016/j.tws.2014.04.016.
  28. Malekzadeh, P., Haghighi, M.R.G. and Shojaee, M. (2014), "Nonlinear free vibration of skew nanoplates with surface and small scale effects", Thin-Wall. Struct., 78, 48-56. https://doi.org/10.1016/j.tws.2013.10.027.
  29. Malekzadeh, P., Setoodeh, A.A.R., Beni, A.A. and Alibeygi, A. (2011), "Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates", Compos. Struct., 93(7), 1631-1639. https://doi.org/10.1016/j.compstruct.2011.01.008.
  30. Mamoon, A.A.A.J., Ridha, A.A., Raad, M.F. and Nadhim M.F. (2023), "Nonlinear dynamic characteristic of sandwich graphene platelet reinforced plates with square honeycomb core", Steel Compos. Struct., 46(5), 659-667. https://doi.org/10.12989/scs.2023.46.5.659.
  31. Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419.
  32. Marin, M. and Florea, O. (2014), "On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies", An. St. Univ. Ovidius Constanta, 22(1), 169-188. https://doi.org/10.2478/auom-2014-0014
  33. Mazur, O. and Awrejcewicz, J. (2022), "The nonlocal elasticity theory for geometrically nonlinear vibrations of double-layer nanoplate systems in magnetic field", Meccanica, 57(11), 2835-2847. https://doi.org/10.1007/s11012-022-01602-9.
  34. Murmu, T. and Adhikari, S. (2011), "Nonlocal vibration of bonded double-nanoplate-systems", Compos. Part B Eng., 42(7), 1901-1911. https://doi.org/10.1016/j.compositesb.2011.06.009.
  35. Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
  36. Pang, M., Fang, Y. and Zhang, Y.Q. (2021), "Free and forced vibrations of double-layered Viscoelastic Orthotropic Graphene Sheets With a High-Order Surface Stress Effect", J. Appl. Mech. Tech. Phys., 62(1), 129-138, https://doi.org/10.1134/S0021894421010168.
  37. Pouresmaeeli, S., Fazelzadeh, A. and Ghavanloo, E. (2012), "Exact solution for nonlocal vibration of double-orthotropic nanoplates embedded in elastic medium", Compos. Part B Eng., 43(8), 3384-3390. https://doi.org/10.1016/j.compositesb.2012.01.046.
  38. Radic, N. and Jeremic, D. (2017), "A comprehensive study on vibration and buckling of orthotropic double-layered graphene sheets under hygrothermal loading with different boundary conditions", Compos. Part B Eng., 128, 182-199. https://doi.org/10.1016/j.compositesb.2017.07.019.
  39. Rajabi, J. and Mohammadimehr, M. (2019), "Hydro-thermomechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations", Steel Compos. Struct., 33(4), 509-523. https://doi.org/10.12989/scs.2019.33.4.509.
  40. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
  41. Saidi, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221.
  42. Sarrami-Foroushani, S. and Azhari, M. (2014), "Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects", Phys. E Low-Dimensional Syst. Nanostruct., 57, 83-95. https://doi.org/10.1016/j.physe.2013.11.002.
  43. Shahabodini, A., Ansari, R. and Rouhi, H. (2020), "A threedimensional surface elastic model for vibration analysis of functionally graded arbitrary straight-sided quadrilateral nanoplates under thermal environment", J. Mech., 37(September), 72-99. https://doi.org/10.1093/jom/ufaa011.
  44. Sharma, K. and Marin, M. (2013), "Effect of distinct conductive a thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space", Sci. Bull., Series A Appl. Mathem. Phys., 75(2), 121-132.
  45. Shenas, A.G., Ziaee, S. and Malekzadeh, P. "Nonlinear free vibration of rotating FG trapezoidal microplates in thermal environment", Thin-Wall. Struct., 170, https://doi.org/10.1016/j.tws.2021.108614.
  46. Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2018), "The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic", Steel Comp. Struct., 29(5), 647-657, https://doi.org/10.12989/scs.2018.29.5.647.
  47. Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2019), "Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory", Steel Comp. Struct., 33(5), 717-727. https://doi.org/10.12989/scs.2019.33.5.717.
  48. Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2020), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Comp. Struct., 34(2), 261-277. https://doi.org/10.12989/scs.2020.34.2.261.
  49. Tornabene, F. and Viola, E. (2008), "2-D solution for free vibrations of parabolic shells using generalized differential quadrature method", Eur. J. Mech., 27(6), 1001-1025. https://doi.org/10.1016/j.euromechsol.2007.12.007.
  50. Tornabene, F. and Viola, E. (2008), "2-D solution for free vibrations of parabolic shells using generalized differential quadrature method", Eur. J. Mech., 27(6), 1001-1025. https://doi.org/10.1016/j.euromechsol.2007.12.007.
  51. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Composite Part B., 115, 449-476. https://doi.org/10.1016/j.compositesb.2016.07.011.
  52. Tornabene, F., Fantuzzi, N., Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.
  53. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016.
  54. Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
  55. Wu, Z., Zhang, Y., Hu, F., Gao, Q., Xu, X. and Zheng, R. (2018), "Vibration analysis of bilayered graphene sheets for building materials in thermal environments based on the element-free method", J. Nanomater., 2018.
  56. Yuan, Y., Zhao, K., Sahmani, S. and Safaei, B. (2020), "Sizedependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes", Appl. Math. Mech., 41, 587-604. https://doi.org/10.1007/s10483-020-2600-6.
  57. Zamani, M., Fallah, A. and Aghdam, M.M. (2012), "Free vibration analysis of moderately thick trapezoidal symmetrically laminated plates with various combinations of boundary conditions", Eur. J. Mech. A/Solids, 36, 204-212. https://doi.org/10.1016/j.euromechsol.2012.03.004.
  58. Zhang, L.W., Zhang, Y. and Liew, K.M. (2017), "Vibration analysis of quadrilateral graphene sheets subjected to an in-plane magnetic field based on nonlocal elasticity theory", Compos. Part B Eng., 118, 96-103. https://doi.org/10.1016/j.compositesb.2017.03.017.