DOI QR코드

DOI QR Code

Out-of-phase and in-phase vibrations and energy absorption of coupled nanoplates on the basis of surface-higher order-viscoelastic-couple stress theories

  • Guangli Fan (Xi'an Siyuan University) ;
  • Maryam Shokravi (Department of Education, Mehrab High School) ;
  • Rasool Javani (Department of Civil Engineering, Jasb Branch, Islamic Azad University) ;
  • Suxa Hou (Department of Civil Engineering, Malaysia University)
  • 투고 : 2023.01.17
  • 심사 : 2024.01.18
  • 발행 : 2024.02.25

초록

In this paper, vibration and energy absorption characteristics of a nanostructure which is composed of two embedded porous annular/circular nanoplates coupled by a viscoelastic substrate are investigated. The modified couple stress theory (MCST) and the Gurtin-Murdoch theory are applied to take into account the size and the surface effects, respectively. Furthermore, the structural damping effect is probed by the Kelvin-Voigt model and the mathematical model of the problem is developed by a new hyperbolic higher order shear deformation theory. The differential quadrature method (DQM) is employed to obtain the out-of-phase and in-phase frequencies of the structure in order to predict the dynamic response of it. The acquired results reveal that the vibration and energy absorption of the system depends on some factors such as porosity, surface stress effects, material length scale parameter, damping and spring constants of the viscoelastic foundation as well as geometrical parameters of annular/circular nanoplates. A bird's-eye view of the findings in the research paper offers a comprehensive understanding of the vibrational behavior and energy absorption capabilities of annular/circular porous nanoplates. The multidisciplinary approach and the inclusion of porosity make this study valuable for the development of innovative materials and applications in the field of nanoscience and engineering.

키워드

참고문헌

  1. Aljaloud, A.S.M., Smida, K. Ameen, H.F.M., Albedah, M.A. and Tlili, I. (2023), "Investigation of phase change and heat transfer in water/copper oxide nanofluid enclosed in a cylindrical tank with porous medium: A molecular dynamics approach", Eng. Anal. Bound. Elem., 146, 284-291, https://doi.org/10.1016/j.enganabound.2022.10.034.
  2. Asemi, S.R. and Farajpour, A. (2014), "Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium", Curr. Apl. Phys., 14, 814-832. https://doi.org/10.1016/j.cap.2014.03.012.
  3. Bahrami, A. and Teimourian, A. (2017), "Small scale effect on vibration and wave power reflection in circular annular nanoplates", Compos. B. Eng, 109(15), 214-226. https://doi.org/10.1016/j.compositesb.2016.09.107.
  4. Banawas, S., Ibrahim, T.K., Tlili, I. and Le Q.H. (2023), "Reinforced Calcium phosphate cements with zinc by changes in initial properties: A molecular dynamics simulation", Eng. Anal. Bound. Elem., 147, 11-21. https://doi.org/10.1016/j.enganabound.2022.11.033.
  5. Barhoumi, E.M., Okonkwo, P.C., Belgacem, I.B. and Zghaibeh, M. and Tlili, I. (2022), "Optimal sizing of photovoltaic systems based green hydrogen refueling stations case study Oman", Int. J. Hydrog. Energy, 47, 31964-31973, https://doi.org/10.1016/j.ijhydene.2022.07.140.
  6. Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26, 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005.
  7. Dero, S., Abdelhameed, T.N., Al-Khaled, K., Lund, L.A., Khan, S.U. and Tlili, I. (2023), "Contribution of suction phenomenon and thermal slip effects for radiated hybrid nanoparticles (Al2O3-Cu/H2O) with stability framework", Int. J. Mod. Phys. B, 37, 2350147, https://doi.org/10.1142/S0217979223501473.
  8. Dogan, N.F. (2021), "Buckling analysis of graphene nanoplatelets-doped carbon/aramid hybrid polymer composite plates", Polym. Compos, 42, 5712-5720. https://doi.org/10.1002/pc.26253.
  9. Du, D., Sun, Y., Liu, H., Liu, X., Ma, H. and Li, H. (2023), "Coupled vibration of an annular plate-cylindrical drum structure with material-nonlinearity damping patches considering position-mistuned and stiffness-mistuned connections", Compos. Struct., 321, 117324, https://doi.org/10.1016/j.compstruct.2023.117324.
  10. Fu, T., Chen, Z. and Yu, H. (2018), "Free vibration of functionally graded sandwich plates based on nth-order shear deformation theory via differential quadrature method", J. Sandw. Struct., 42, https://doi.org/10.1177/1099636218809451.
  11. Golabchi, H., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21, 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  12. Habib, A. and Foroutan, K. (2021) "Nonlinear buckling analysis of FGP shallow spherical shells under thermomechanical condition", Steel Compos. Struct., 40, 555-570. https://doi.org/10.12989/scs.2021.40.4.555.
  13. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213 . https://doi.org/10.1016/j.ijmecsci.2018.01.026 .
  14. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019a), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  15. Hieu, P. and Tung H.V. (2020), "Buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments under mechanical loads in thermal environments", Polym. Compos, 100, e201900243, https://doi.org/10.1002/zamm.201900243.
  16. Hieu, P. and, Tung, H.V. (2020), "Buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments under mechanical loads in thermal environments", Int J Numer Methods Eng., 100, e201900243, https://doi.org/10.1002/zamm.201900243.
  17. Huhemandula, Bai, J., Kadir, D.H., Fagiry, M.A. and Tlili, I. (2022), "Numerical analysis and two-phase modeling of water Graphene Oxide nanofluid flow in the riser condensing tubes of the solar collector heat exchanger", Sustain. Energy Technol. Assess., 53, 102408, https://doi.org/10.1016/j.seta.2022.102408.
  18. Huo, J., Zhang, G., Ghabussi, A. and Habibi M. (2022), "Bending analysis of FG-GPLRC axisymmetric circular/annular sector plates by considering elastic foundation and horizontal friction force using 3D-poroelasticity theory", Compos. Struct, 276(15), 114438, https://doi.org/10.1016/j.compstruct.2021.114438.
  19. Jamalpoor, A., Ahmadi-Savadkoohi, A., Hosseini, M. and Hosseini-Hashemi, S. (2017), "Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco- Pasternak medium via nonlocal elasticity theory", Eroup. J. Mech. A, 63, 84-98. https://doi.org/10.1016/j.euromechsol.2016.12.002.
  20. Kamarian, S., Bodaghi, M. and Song, J.L. (2020), "Hygrothermal effects on the buckling of soft-core sandwich plates with composite layered face sheets", Polym. Compos, 41, 4144-4169. https://doi.org/10.1002/pc.25700.
  21. Kolahchi, R. (2017a), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  22. Kolahchi, R. (2019a), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  23. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  24. Kolahchi, R., Arbabi, A. and Rabani Bidgoli, M. (2020b), "Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete", Smart Struct. Syst., 25 (1), 97-104. https://doi.org/10.12989/sss.2020.25.1.097.
  25. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2018), "A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Mathemat. Applicat., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
  26. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struct., 24, 643-662. https://doi.org/10.1177/10996362211020388
  27. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. ttps://doi.org/10.1016/j.compstruct.2016.05.023.
  28. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A.H. (2017b), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  29. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020a). "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656, https://doi.org/10.1016/j.ast.2019.105656.
  30. Ma, L.S. and Wang, T.J. (2004), "Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory", Int. J. Solids Struct., 41(1), 85-101. https://doi.org/10.1016/j.ijsolstr.2003.09.008.
  31. Motezaker, M. and Kolahchi, R. (2017), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  32. Motezaker, M., Jamali, M. and Kolahchi, R. (2021b), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory, Comput. Appl. Math. 369, 112625. https://doi.org/10.1016/j.cam.2019.112625.
  33. Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S. R. (2021a), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos. https://doi.org/10.1002/pc.26118.
  34. Ozgur Yayli, M. (2017), "Buckling analysis of a cantilever single-walled carbon nanotube embedded in an elastic medium with an attached spring", Micro Nano Lett, 12, 255-259. https://doi.org/10.1049/mnl.2016.0662.
  35. Pham, Q.H., Tran, T.T., Tran, V., Nguyen P.C. and Thoi, T.N. (2022), "Free vibration of functionally graded porous non-uniform thickness annular-nanoplates resting on elastic foundation using ES-MITC3 element", Alex. Eng. J., 61, 1788-1802. https://doi.org/10.1016/j.aej.2021.06.082.
  36. Prasad, K.V., Vaidya, H., Oudina, F.M., Ramadan. K.M., Khan, M.I., Choudhari. R., Gulab, R.K., Tlili, I., Guedr, K. and Galal, A.M. (2022), "Peristaltic activity in blood flow of Casson nanoliquid with irreversibility aspects in vertical non-uniform channel", Indian Chem. Soc., 99, 100617, https://doi.org/10.1016/j.jics.2022.100617.
  37. Rajakarunakaran, S.A., Lourdu, A.R., Muthusamy, S., Panchal, H., Alrubaie, A.J., Jaber, M.M., Ali, M.H., Tlili, I., Maseleno, A., Majdi, A. and Ali, S.H.M. (2022), "Prediction of strength and analysis in self-compacting concrete using machine learning based regression techniques", Adv. Eng. Softw., 173, 103267. https://doi.org/10.1016/j.advengsoft.2022.103267.
  38. Saidi, A.R., Rasouli, A. and Sahraee, S. (2009), "Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory", Compos. Struct., 89(1), 110-119. https://doi.org/10.1016/j.compstruct.2008.07.003.
  39. Saini, R. (2023), "Thermoelastic vibrations of functionally graded nonuniform nanobeams", Nanomater. Adv. Technol., 141-171, https://doi.org/10.1007/978-981-19-1384-6_8.
  40. Saini, R. and Pradyumna, S. (2023a), "Asymmetric vibrations of functionally graded annular nanoplates under thermal environment using nonlocal elasticity theory with modified nonlocal boundary conditions", J. Eng. Mech., 149, 193-198. https://doi.org/10.1061/JENMDT.EMENG-7016.
  41. Saini, R. and Pradyumna, S. (2023b), "A layer-wise theory for the dynamic analysis of functionally graded composite nanobeams under thermal environment using nonlocal boundary conditions and Chebyshev collocation technique", J. Vib. Control, https://doi.org/10.1177/10775463231212529.
  42. Saini, R. and Pradyumna, S. (2023c), "Nonlocal boundaries and paradoxes in thermoelastic vibrations of functionally graded Non-Uniform cantilever nanobeams and annular nanoplates", Structures, 55, 1292-1305. https://doi.org/10.1016/j.istruc.2023.06.095.
  43. Shao, D., Zhang, Y., Tao, Y., Zhao, Y. and Cao, Y. (2024), "Theoretical and experimental investigations on free vibration characteristics of arbitrary spatially closed-coupled plates", J. Sound Vib., 570, 118007. https://doi.org/10.1016/j.jsv.2023.118007.
  44. Singh, P.P., Azam, M.S and Azam, M.S. (2020), "Size-dependent natural frequencies of functionally graded plate with out of plane material inhomogeneity using Eringen's theory of nonlocal elasticity", Proc. Inst. Mech. Eng, 234, https://doi.org/10.1177/1464420719886887.
  45. Taj, M., Mohamed, A., Khadimallah, M.H., Mahmood, S., Safeer, M., Rashid, Y., Ahmad, M., Naeem, M.N., Asghar, S., Ponnore, J., Qahtani, A.A., Mahmoud, S.R., Afaf, S., Alwabli and Tounsi, A. (2021), "Instability analysis of microfilaments with and without surface effects using Euler theory", Adv. Nano Res, 10(6), 509-516. https://doi.org/10.12989/anr.2021.10.6.509.
  46. Timesli, A. (2020), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res, 9, 69-82. https://doi.org/10.12989/anr.2020.9.2.069.
  47. Tlili, I. and Alharbi, T. (2022), "Investigation into the effect of changing the size of the air quality and stream to the trombe wall for two different arrangements of rectangular blocks of phase change material in this wall", J. Build. Eng., 52, 104328. https://doi.org/10.1016/j.jobe.2022.104328.
  48. Van Vinh, P. (2022), "Nonlocal free vibration characteristics of power-law and sigmoid functionally graded nanoplates considering variable nonlocal parameter", Physica E Low Dimens. Syst. Nanostruct., 135, 114951. https://doi.org/10.1016/j.physe.2021.114951.
  49. Vinyas, M., Sandeep, A.S. and Nguyen-Thoi, T. (2019), "A finite element-based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory", J Intell Mater Syst Struct, 30(16), 2019, https://doi.org/10.1177/1045389X19862386.
  50. Xu, C., Rong, D., Tong, Z., Zhou, Z., Hu, J. and Xu, X. (2019), "Coupled effect of in-plane magnetic field and size effect on vibration properties of the completely free double-layered nanoplate system", Physica E, 108, 215-255. https://doi.org/10.1016/j.physe.2018.12.020.
  51. Yang, Y., Hu, Z.L. and Li, X.F. (2021), "Axisymmetric bending and vibration of circular nanoplates with surface stresses", Thin-Wall. Struct., 166, 108086. https://doi.org/10.1016/j.tws.2021.108086.
  52. Zhou, L. and Najjari, Y. (2022), "Analytical solution of buckling problem in plates reinforced by Graphene platelet based on third order shear deformation theory", Steel Compos. Struct, 43, 725-734. https://doi.org/10.12989/scs.2022.43.6.725.