DOI QR코드

DOI QR Code

Numerical and experimental analysis on the axial compression performance of T-shaped concrete-filled thin-walled steel

  • Xuetao Lyu (Advanced and Sustainable Infrastructure Materials Group, School of Transportation and Civil Engineering & Architecture, Foshan University) ;
  • Weiwei Wang (School of Architectural Engineering, Guangzhou Vocational and Technical University of Science and Technology) ;
  • Huan Li (Centre for Infrastructure Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University) ;
  • Jiehong Li (Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales) ;
  • Yang Yu (Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales)
  • Received : 2023.06.29
  • Accepted : 2023.11.07
  • Published : 2024.02.25

Abstract

The research comprehensively studies the axial compression performance of T-shaped concrete-filled thin-walled steel tubular (CTST) long columns after fire exposure. Initially, a series of tests investigate the effects of heating time, load eccentricity, and stiffeners on the column's performance. Furthermore, Finite Element (FE) analysis is employed to establish temperature and mechanical field models for the T-shaped CTST long column with stiffeners after fire exposure, using carefully determined key parameters such as thermal parameters, constitutive relations, and contact models. In addition, a parametric analysis based on the numerical models is conducted to explore the effects of heating time, section diameter, material strength, and steel ratio on the axial compressive bearing capacity, bending bearing capacity under normal temperature, as well as residual bearing capacity after fire exposure. The results reveal that the maximum lateral deformation occurs near the middle of the span, with bending increasing as heating time and eccentricity rise. Despite a decrease in axial compressive load and bending capacity after fire exposure, the columns still exhibit desirable bearing capacity and deformability. Moreover, the obtained FE results align closely with experimental findings, validating the reliability of the developed numerical models. Additionally, this study proposes a simplified design method to calculate these mechanical property parameters, satisfying the ISO-834 standard. The relative errors between the proposed simplified formulas and FE models remain within 10%, indicating their capability to provide a theoretical reference for practical engineering applications.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China (Grant No. 51208246). The authors are deeply grateful for the financial support from funding body.

References

  1. ACI (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08), In: Farmington Hills MI, USA.
  2. Ayough, P., Wang, Y.-H. and Ibrahim, Z. (2023), "Analytical study of concrete-filled steel tubular stub columns with double inner steel tubes", Steel Compos. Struct., 47(5), 645-661. https://doi.org/10.12989/scs.2023.47.5.645.
  3. Ci, J., Ahmed, M., Tran, V.-L., Jia, H., Chen, S. and Nguyen, T.N. (2022), "Buckling resistance of axially loaded square concretefilled double steel tubular columns", Steel Compos. Struct., 43(6), 689-706. https://doi.org/10.12989/scs.2022.43.6.689.
  4. EN (2004), Design of Composite Steel and Concrete Structures, Part1-2: General Rules - Structural Fire Design (EN 1994-1- 2:2004), In: Brussels, Belgium.
  5. Gao, S., Peng, Z., Wang, X. and Liu, J. (2019), "Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion", Steel Compos. Struct., 33(4), 615-627. https://doi.org/10.12989/scs.2019.33.4.615.
  6. GB (2014), Echnical Code for Concrete Filled Steel Tubular Structures(GB 50936-2014), In: Architecture & Industry Press of China.
  7. GB/T (2002), Standard for Test Method of Mechanical Properties on Ordinary Concrete (GB/T 50081-2002), In: Architecture & Industry Press of China.
  8. GB/T (2008), Test Standard for Fire Resistance of Construction Members (GB/T 9978.1-2008), In: Architecture & Industry Press of China.
  9. GB/T (2010), "Metallic materials-tensile testing-part 1: Method of test at room temperature (GB/T 228.1-2010), In: Architecture & Industry Press of China.
  10. Han, L.-H., Yang, Y.-F., Yang, H. and Huo, J.-S. (2002), "Residual strength of concrete-filled RHS columns after exposure to the ISO-834 standard fire", Thin-Wall. Struct., 40, 991-1012. https://doi.org/10.1016/S0263-8231(02)00044-7.
  11. Hong, S. and Varma, A. H. (2009), "Analytical modeling of the standard fire behavior of loaded CFT columns", J. Construct. Steel Res., 65(1), 54-69. https://doi.org/10.1016/j.jcsr.2008.04.008.
  12. Hu, H.-S., Fang, P.-P., Liu, Y., Guo, Z.-X. and Shahrooz, B. M. (2020), "Local buckling of steel plates in composite members with tie bars under axial compression", Eng. Struct., 205. https://doi.org/10.1016/j.engstruct.2019.110097.
  13. JGJ (2006), Technical Specification for Concrete Structures with Specially Shaped Columns (JGJ 149-2017), In: Architecture & Industry Press of China.
  14. Liu, F., Yang, H. and Wang, W. (2021), "Behaviours of concentrically and eccentrically loaded square steel tube confined reinforced concrete slender columns after fire exposure", Thin-Wall. Struct., 158. https://doi.org/10.1016/j.tws.2020.107155.
  15. Liu, X., Liu, J., Yang, Y., Cheng, G. and Lanning, J. (2020), "Resistance of special-shaped concrete-filled steel tube columns under compression and bending", J. Construct. Steel Res., 169. https://doi.org/10.1016/j.jcsr.2020.106038.
  16. Liu, X., Zhang, J., Lu, H., Guan, N., Xiao, J. and Du, G. (2021), "Behavior of the T-shaped concrete-filled steel tubular columns after elevated temperature", Adv. Civil Eng., 2021, 6638736. https://doi.org/10.1155/2021/6638736.
  17. Lyu, X., Xu, Y., Xu, Q. and Yu, Y. (2019), "Axial compression performance of square thin walled concrete-filled steel tube stub columns with reinforcement stiffener under constant hightemperature", Materials (Basel), 12(7), 1098. https://doi.org/10.3390/ma12071098.
  18. Lyu, X., Zhang, T., Liu, F. and Liu, Y. (2022), "Behaviours of stiffened concrete-filled thin-walled square steel tubular stub columns after non-uniform fire exposure", J. Construct. Steel Res., 188, 107031. https://doi.org/10.1016/j.jcsr.2021.107031.
  19. Memarzadeh, A., Shahmansouri, A.A. and Poologanathan, K. (2022), "A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns", Steel Compos. Struct., 44(3), 309-324. https://doi.org/10.12989/scs.2022.44.3.309.
  20. Mou, B., Wang, Z., Qiao, Q. and Zhou, W. (2022), "Exposed Reinforced concrete-filled steel tubular (RCFST) column-base joint with high-strength", Steel Compos. Struct., 44(1), 1-15. https://doi.org/10.12989/scs.2022.44.1.001.
  21. Tao, Z., Han, L.-H. and Wang, D.-Y. (2007), "Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns", Thin-Wall. Struct., 45(5), 517-527. https://doi.org/10.1016/j.tws.2007.04.003.
  22. Tao, Z., Wang, X.-Q. and Uy, B. (2013), "Stress-strain curves of structural and reinforcing steels after exposure to elevated temperatures", J. Mater. Civil Eng., 25(9), 1306-1316. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000676.
  23. Wang, W., Lyu, X., Zhang, Y., Yu, Y. and Zhang, T. (2020), "Axial compression performance of thin-walled T-shaped concrete filled steel tubular columns under constant high temperature: Experimental and numerical study", Structures, 27, 525-541. https://doi.org/10.1016/j.istruc.2020.06.004.
  24. Xie, D. and Qian, Z. (1996), "Experimental study on strength and deformation of concrete under high temperature(openfire)", Eng. Mech., S1, 54-58.
  25. Yang, Y., Wang, Y. and Fu, F. (2014), "Effect of reinforcement stiffeners on square concrete-filled steel tubular columns subjected to axial compressive load", Thin-Wall. Struct., 82, 132-144. https://doi.org/10.1016/j.tws.2014.04.009.
  26. Yin, F., Xue, S.-D., Cao, W.-L., Dong, H.-Y. and Wu, H.-P. (2020), "Experimental and analytical study of seismic behavior of special-shaped multicell composite concrete-filled steel tube columns", J. Struct. Eng., 146(1), 04019170. https://doi.org/10.1061/(ASCE)ST.1943-541X.000244.
  27. Zhang, J.-C., Liu, X.-Y., Zeng, L., Du, G.-F. and Xiao, J.-H. (2021), "Seismic behavior of cross-shaped concrete-filled steel tubular columns", Steel Compos. Struct., 40(3), 405-420. https://doi.org/10.12989/scs.2021.40.3.405.
  28. Zhang, T., Lyu, X., Liu, H., Yu, Y. and Xu, Y. (2021), "Analysis of finite element mechanism of axial compressive behavior of Tshaped stiffened concrete-filled steel tubular stub columns after uniform fire exposure", Int. J. Steel Struct., 21(3), 836-849. https://doi.org/10.1007/s13296-021-00476-z.
  29. Zhang, T., Lyu, X., Liu, H., Zhang, L., Wang, J. and Gao, S. (2020), "Axial performance degradation of squared CFST stubs in severe cold and acid rain area", Construct. Build. Mater., 262, 120612. https://doi.org/10.1016/j.conbuildmat.2020.120612.
  30. Zheng, Y. and Zeng, S. (2020), "Design of L-shaped and T-shaped concrete-filled steel tubular stub columns under axial compression", Eng. Struct., 207, 110262. https://doi.org/10.1016/j.engstruct.2020.110262.
  31. Zuo, Z.-L., Cai, J., Yang, C., Chen, Q.-J. and Sun, G. (2012), "Axial load behavior of L-shaped CFT stub columns with binding bars", Eng. Struct., 37, 88-98. https://doi.org/10.1016/j.engstruct.2011.12.042.