Acknowledgement
The authors would like to thank the Cryogenic Group of the Inter-University Accelerator Centre, New Delhi, for their support in providing liquid helium and liquid nitrogen for this experimental study. The authors also like to thank Vijay Soni, Dr. Navneet Kumar, Sankar Ram T., S.K. Saini, Rajesh Kumar and Dr. R.G. Sharma for their technical help in conducting the experiment. The authors would also like to thank SAMEER-Mumbai for their support in carrying out this activity for the IMRI project.
References
- Kar, S., Suman, N., Ram, S.T., Soni, V., et al.: Development of high homogeneity and high stability 1.5T superconducting magnet for whole body MRI scanner. Indian J. Cryog. 44, 193-198 (2019) https://doi.org/10.5958/2349-2120.2019.00034.7
- Hollis T.J.: Non-coupling magnet shielding coil, US patent 0021465 A1, (2004)
- Gabrielse, G., Tan, J., Clateman, P., Orozco, L.A., Rolston, S.L., Tseng, C.H., Tjoelker: A Superconducting solenoid system which cancels fuctuations in the ambient magnetic. Field J. Magn. Reson. 91, 564-572 (1991)
- Iwasa, Y.: Case Studies in Superconducting Magnets. Springer, New York (2009)
- Yamamoto, S., Yamada, T., Iwamoto, M.: Quench protection of persistent current switches using diodes at cryogenic temperature. Proceedings of the 19th annual IEEE PECS recreation, pp 11-14 (1988)
- Chouhan, S., Green, M., Zeller, A.: Voltage characteristics of diodes used for passive quench protection of low-current magnets. IEEE Trans. Appl. Supercond. 25, 1-4 (2015)
- Willering, G.P., et al.: Performance of the cold powered cold diodes and diode leads in the main magnets of the LHC. IOP Conf. Ser.: Mater. Sci. Eng. 101, 012076 (2015) https://doi.org/10.1088/1757-899X/101/1/012076
- Gui, H., et al.: Review of power electronics components at cryogenic temperatures. IEEE Trans. Power Electron. 35, 5144-5156 (2020) https://doi.org/10.1109/TPEL.2019.2944781
- Soni, V., Gupta, A., Kar, S.: High-power cold diodes for the protection of the 1.5 T superconducting MRI magnet system. Semicond. Sci. Technol. (2022). https://doi.org/10.1088/1361-6641/ac7163
- Ostapchuk, M., Dmitry, S., Daniil, S., Sergey, Z.: Research of static and dynamic properties of power semiconductor diodes at low and cryogenic temperatures. Inventions 7, 96 (2022)
- Rajashekara, K., Akin, B.: A review of cryogenic power electronics - status and applications. In: 2013 International electric mchines & drives conference. Chicago, IL, USA, pp 899-904 (2013). https://doi.org/10.1109/IEMDC.2013.6556204
- Ward, R.R., et al.: Power diodes for cryogenic operation. Proc. IEEE 34th Power Electron. Spec. Conf. 4, 1891-1896 (2003)
- Yang S.: Cryogenic characteristics of IGBTs. Ph.D. dissertation, Univ. Birmingham, Birmingham, UK, (2005)
- Jia C.: Experimental investigation of semiconductor losses in cryogenic DC-DC converters. Ph.D. dissertation, Univ. Birmingham, Birmingham, UK, (2008)
- Nandawadekar, A., Kar, S., et al.: Thermal and electrical behaviour of the persistent current switch for a whole-body superconducting MRI magnet. IEEE Trans. Appl. Supercond. (2021). https://doi.org/10.1109/TASC.2021.3076748
- Standard Recover Diode, Vishay, www.vishay.com, 2020 [Online]. https://docs.rs-online.com/39f1/0900766b8130080d.pdf. Accessed 11 May 2020.
- Ultra-Fast Avalanche Sinterglass Diode, Vishay, www.vishay.com, 2020 [Online]. https://www.vishay.com/docs/86044/byv2850.pdf. Accessed 11 May 2020.
- Bose, B.K.: Power electronics and AC. Drives, Prentince-Hall, Englewood, NJ (1986)