DOI QR코드

DOI QR Code

Fixed-time non-singular terminal sliding mode control for PMSM drive systems

  • Huixiang Liu (School of Electrical and Information Engineering, Jiangsu University) ;
  • Keqi Mei (School of Electrical and Information Engineering, Jiangsu University) ;
  • Lu Liu (School of Electrical and Information Engineering, Jiangsu University) ;
  • Yafei Chang (Beijing Institute of Control Engineering) ;
  • Shihong Ding (School of Electrical and Information Engineering, Jiangsu University) ;
  • Hanzhang Zhang (Zhejiang JIALIFT Warehouse Equipment Co., Ltd.) ;
  • Jun Wang (Zhejiang JIALIFT Warehouse Equipment Co., Ltd.)
  • Received : 2023.06.25
  • Accepted : 2023.10.30
  • Published : 2024.02.20

Abstract

To further improve the response speed and anti-interference capability of permanent magnet synchronous motors (PMSMs), many advanced control algorithms have been developed. Among the various advanced controls, the fixed-time terminal sliding mode control is one of the effective methods. However, there are still some problems, e.g., too many parameters imposed on the control design in the existing results. In this paper, a fixed-time non-singular terminal sliding mode control (FTNTSMC) method is proposed for the speed loop of a PMSM drive system. First, to improve the closed-loop performance of the PMSM drive system, the relationship between the reference q-axis current and the speed of the PMSM is described in a second-order model. Next, a sliding mode surface with variable exponential coefficients is selected, and the expression of the controller is given. Then, the stability of the PMSM drive system is demonstrated by using Lyapunov functions. Using this method, the fixed-time convergence of the PMSM drive system can be realized and the occurrence of singularity phenomena can be avoided in a simpler and easier method. Finally, the effectiveness of the proposed method is verified by simulation and experimental results.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grants 62373170, 61973142, 62003034, 62203188 and 62103170; the Natural Science Foundation of Jiangsu Province under Grants BK20220517 and BK20210745; and the China Postdoctoral Science Foundation under Grant 2022M721386.

References

  1. Zhang, W., Xiao, F., Liu, J., et al.: Optimization of maximum torque output in the wide speed range of a PMSM traction control system. J. Power Electr. 20(1), 152-162 (2020)  https://doi.org/10.1007/s43236-019-00008-3
  2. Li, J., Ren, H., Zhong, Y.: Robust speed control of induction motor drives using first-order auto-disturbance rejection controllers. IEEE Trans. Ind. Appl. 51(1), 712-720 (2014) 
  3. Xia, J., Li, Z., Yu, D., Guo, Y., et al.: Robust speed and current control with parametric adaptation for surface-mounted PMSM considering system perturbations. IEEE J. Emerg. Sel. Top. Power Electr. 9(3), 2807-2817 (2020) 
  4. Zhou, Q., Liu, F., Gong, H.: Robust three-vector model predictive torque and stator flux control for PMSM drives with prediction error compensation. J. Power Electr. 22, 1917-1926 (2022)  https://doi.org/10.1007/s43236-022-00522-x
  5. Sun, X., Wu, M., Lei, G., et al.: An improved model predictive current control for PMSM drives based on current track circle. IEEE Trans. Ind. Electron. 68(5), 3782-3793 (2020) 
  6. Ding, S., Zhang, B., Mei, K., et al.: Adaptive fuzzy SOSM controller design with output constraints. IEEE Trans. Fuzzy Syst. 30(7), 2300-2311 (2022)  https://doi.org/10.1109/TFUZZ.2021.3079506
  7. Sun, J., Pu, Z., Chang, Y., et al.: Appointed-time control for flexible hypersonic vehicles with conditional disturbance negation. IEEE Trans. Aerosp. Electr. Syst. (2023). https://doi.org/10.1109/TAES.2023.3274098 
  8. Yuan, T., Zhang, Y., Wang, D.: Performance improvement for PMSM control system based on composite controller used adaptive internal model controller. Energy Rep. 8, 11078-11087 (2022)  https://doi.org/10.1016/j.egyr.2022.08.257
  9. Ma, L., Mei, K., Ding, S., et al.: Design of adaptive fuzzy fxedtime HOSM controller subject to asymmetric output constraints. IEEE Trans. Fuzzy Syst. 31(9), 2989-2999 (2023)  https://doi.org/10.1109/TFUZZ.2023.3241147
  10. Ma, L., Cheng, C., Guo, J., et al.: Direct yaw-moment control of electric vehicles based on adaptive sliding mode. Math. Biosci. Eng. 20(7), 13334-13355 (2023)  https://doi.org/10.3934/mbe.2023594
  11. Mei, K., Ding, S., Yu, X.: A generalized supertwisting algorithm. IEEE Trans. Cybern. 53(6), 3951-3960 (2023)  https://doi.org/10.1109/TCYB.2022.3188877
  12. Ding, S., Hou, Q., Wang, H.: Disturbance-observer-based second-order sliding mode controller for speed control of PMSM drives. IEEE Trans. Energy Convers. 38(1), 100-110 (2023)  https://doi.org/10.1109/TEC.2022.3188630
  13. Mei, K., Qian, C., Ding, S.: Design of adaptive SOSM controller subject to disturbances with unknown magnitudes. IEEE Trans. Circuits Syst. I Regul. Pap. 70(5), 2133-2142 (2023)  https://doi.org/10.1109/TCSI.2023.3241291
  14. Utkin, V.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212-222 (1977)  https://doi.org/10.1109/TAC.1977.1101446
  15. Hou, Q., Ding, S., Yu, X.: A super-twisting-like fractional controller for SPMSM drive system. IEEE Trans. Ind. Electron. 69(9), 9376-9384 (2022)  https://doi.org/10.1109/TIE.2021.3116585
  16. Sun, J., Li, Q., Ding, S., et al.: Fixed-time generalized super-twisting control for path tracking of autonomous agricultural vehicles considering wheel slipping. Comput. Electron. Agric. 213, 108231 (2023) 
  17. Man, Z., Yu, X.: Terminal sliding mode control of mimo linear systems. IEEE Trans. Circuits Syst. Part I 44(11), 1065-1070 (1997)  https://doi.org/10.1109/81.641769
  18. Dou, W., Ding, S., Yu, X.: Event-triggered second-order sliding-mode control of uncertain nonlinear systems. IEEE Trans. Syst. Man Cybern. (2023). 
  19. Dou, W., Ding, S., Park, J.: Practical event-triggered fnitetime second-order sliding mode controller design. IEEE Trans. Cybern. (2023). https://doi.org/10.1109/TCYB.2023.3311424 
  20. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106-2110 (2011)  https://doi.org/10.1109/TAC.2011.2179869
  21. Chen, C., Li, L., Peng, H., et al.: A new fixed-time stability theorem and its application to the fixed-time synchronization of neural networks. Neural Netw. 123, 412-419 (2020)  https://doi.org/10.1016/j.neunet.2019.12.028
  22. Hu, C., Yu, J., Chen, Z., et al.: Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks. Neural Netw. 89, 74-83 (2017)  https://doi.org/10.1016/j.neunet.2017.02.001
  23. Polyakov, A., Fridman, L.: Stability notions and lyapunov functions for sliding mode control systems. J. Frankl. Inst. 351(4), 1831-1865 (2014)  https://doi.org/10.1016/j.jfranklin.2014.01.002
  24. Mei, K., Ding, S., Chen, C.: Fixed-time stabilization for a class of output-constrained nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 52(10), 6498-6510 (2022)  https://doi.org/10.1109/TSMC.2022.3146011
  25. Wu, S., Su, X., Wang, K.: Time-dependent global nonsingular fixed-time terminal sliding mode control-based speed tracking of permanent magnet synchronous motor. IEEE Access 8, 186408-186420 (2020)  https://doi.org/10.1109/ACCESS.2020.3030279
  26. Zeng, T., Ren, X., Zhang, Y.: Fixed-time sliding mode control and high-gain nonlinearity compensation for dual-motor driving system. IEEE Trans. Ind. Inf. 16(6), 561-565 (2020) 
  27. Xu, W., Junejo, A., Liu, Y., et al.: Improved continuous fast terminal sliding mode control with extended state observer for speed regulation of PMSM drive system. IEEE Trans. Veh. Technol. 68(11), 10465-10476 (2019)  https://doi.org/10.1109/TVT.2019.2926316
  28. Parsegov, S., Polyakov, A., Shcherbakov, P.: Nonlinear fixed-time control protocol for uniform allocation of agents on a segment. Dokl. Math. 87(1), 133-136 (2013)  https://doi.org/10.1134/S106456241301033X
  29. Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38(3), 751-766 (2000)  https://doi.org/10.1137/S0363012997321358
  30. Moulay, E., Lechappe, V., Bernuau, E., et al.: Robust fixed-time stability: application to sliding-mode control. IEEE Trans. Autom. Control 67(2), 1061-1066 (2021) 
  31. Li, S., Zong, K., Liu, H.: A composite speed controller based on a second-order model of permanent magnet synchronous motor system. Trans. Inst. Meas. Control. 33(5), 522-541 (2011)  https://doi.org/10.1177/0142331210371814
  32. Feng, Y., Yu, X., Han, F.: On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49(6), 1715-1722 (2013) https://doi.org/10.1016/j.automatica.2013.01.051