DOI QR코드

DOI QR Code

Research on overvoltage suppression of three-level converter based on two-three phase mixed conduction mode

  • Sifeng Zhao (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology) ;
  • Caiyong Ye (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology) ;
  • Shanming Wan (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology)
  • 투고 : 2023.06.20
  • 심사 : 2023.10.23
  • 발행 : 2024.02.20

초록

For medium and high voltage drives, the three-level converter has better technical and economical performances than the two-level converter. Permanent magnetic brushless DC (BLDC) motors are widely used due to their simple control, low-resolution requirement of the position sensor, and high power density. The power switching devices in the non-conducting phase are blocked all the time when the two-phase conduction mode is used. Serious overvoltage of the inner power switching device occurs, which triggers the overvoltage alarm or causes system failure. In this paper, the overvoltage mechanism of the inner power switching device is analyzed in detail, and a mixed conduction mode containing a three-phase conduction mode in the first stage and a two-phase conduction mode in the second stage is proposed. The speed threshold for the switching of the two control modes is designed to suppress overvoltage in the starting stage and to reduce the loss of the converter at high speeds. The effectiveness of the overvoltage suppression and system safety of the proposed mixed conduction mode are verified by simulations and experiments.

키워드

과제정보

This research was supported in part by the National Natural Science Foundation of China under Grant 52077087.

참고문헌

  1. Zhang, M., Zhang, Z., Li, Z., Chen, H., Zhou, D.: A unified open-circuit-fault diagnosis method for three-level neutral-point-clamped power converters. IEEE Trans. Power Electron. 38(3), 3834-3846 (2023) https://doi.org/10.1109/TPEL.2022.3218427
  2. Hakami, S.S., Halabi, L.M., Lee, K.-B.: Dual-carrier-based PWM method for DC-link capacitor lifetime extension in three-level hybrid ANPC inverters. IEEE Trans. Ind. Electron. 70(4), 3303-3314 (2023) https://doi.org/10.1109/TIE.2022.3177806
  3. Kolar, J.W., Friedli, T., Rodriguez, J., Wheeler, P.W.: Review of three-phase PWM AC-AC converter topologies. IEEE Trans. Ind. Electron. 58(11), 4988-5006 (2011) https://doi.org/10.1109/TIE.2011.2159353
  4. Teichmann, R., Bernet, S.: A comparison of three-level converters versus two-level converters for low-voltage drives, traction, and utility applications. IEEE Trans. Ind. Appl. 41(3), 855-865 (2005) https://doi.org/10.1109/TIA.2005.847285
  5. Zhao, S., Ye, C.: Research on low switching loss control strategy of high-speed FESS based on NPC three-level converter. IEEE Trans Transport Electrif 9(1), 1403-1415 (2023) https://doi.org/10.1109/TTE.2022.3193737
  6. Aqil, M., Hur, J.: A direct redundancy approach to fault-tolerant control of BLDC motor with a damaged hall-efect sensor. IEEE Trans. Power Electron. 35(2), 1732-1741 (2020) https://doi.org/10.1109/TPEL.2019.2917559
  7. Mohanraj, D., Aruldavid, R., Verma, R., Sathiyasekar, K., Barnawi, A.B., Chokkalingam, B., Mihet-Popa, L.: A review of BLDC motor: state of art, advanced control techniques, and applications. IEEE Access 10, 54833-54869 (2022) https://doi.org/10.1109/ACCESS.2022.3175011
  8. Ebadpour, M., Amiri, N., Jatskevich, J.: Fast fault-tolerant control for improved dynamic performance of hall-sensor-controlled brushless DC motor drives. IEEE Trans. Power Electron. 36(12), 14051-14061 (2021) https://doi.org/10.1109/TPEL.2021.3084921
  9. Yang, L., Zhu, Z.Q., Bin, H., Zhang, Z., Gong, L.: Virtual third harmonic back EMF-based sensorless drive for high-speed BLDC motors considering machine parameter asymmetries. IEEE Trans. Ind. Appl. 57(1), 306-315 (2021) https://doi.org/10.1109/TIA.2020.3033821
  10. Gui, H., Chen, R., Liang, Y., Zhang, Z., Niu, J., Ren, R.: Modeling and mitigation of multiloops related device overvoltage in threelevel active neutral point clamped converter. IEEE Trans. Power Electron. 35(8), 7947-7959 (2020)
  11. Suh, J.-H., Suh, B.-S., Hyun, D.-S.: A new snubber circuit for high efficiency and overvoltage limitation in three-level GTO inverters. IEEE Trans. Ind. Electron. 44(2), 145-156 (1997)
  12. Hammes D, Fuhrmann J, Gierschner S, Krug D, Eckel H-G (2019) Overvoltage short-circuit failures in three-level ANPC converters. In: Proceedings of European conference power electronics and applications (EPE' ECCE Europe), pp 1-10
  13. Xu C, Xuehua W, Xinbo R, Cheng W, Huanyu W (2018) A low-voltage ride-through control strategy for two-stage T-type three-level photovoltaic inverters limiting DC-link overvoltage and grid-side overcurrent. In: Proceedings of European conference on power electronics and applications (EPE' ECCE Europe), pp 1-10
  14. Diab, M.S., Yuan, X.: A quasi-three-level PWM scheme to combat motor overvoltage in SiC-based single-phase drives. IEEE Trans. Power Electron. 35(12), 12639-12645 (2020) https://doi.org/10.1109/TPEL.2020.2994289
  15. Videt, A., Le Moigne, P., Idir, N., Baudesson, P., Franchaud, J.-J., Ecrabey, J.: Motor overvoltage limitation by means of a new EMIreducing PWM strategy for three-level inverters. IEEE Trans. Ind. Appl. 45(5), 1678-1687 (2009) https://doi.org/10.1109/TIA.2009.2027517
  16. Naumanen, V., Korhonen, J., Silventoinen, P., Pyrhonen, J.: Multilevel modulation method for mitigation of high du/dt-originated oscillating overvoltages at motor terminals. IET Power Electron 4(1), 29-38 (2011) https://doi.org/10.1049/iet-pel.2009.0235
  17. Strom, J., Korhonen, J., Tyster, J., Silventoinen, P.: Active du/dt-new output-filtering approach for inverter-fed electric drives. IEEE Trans. Ind. Electron. 58(9), 3840-3847 (2011) https://doi.org/10.1109/TIE.2010.2093480