DOI QR코드

DOI QR Code

S-VERSIONS AND S-GENERALIZATIONS OF IDEMPOTENTS, PURE IDEALS AND STONE TYPE THEOREMS

  • Bayram Ali Ersoy (Department of Mathematics Yildiz Technical University) ;
  • Unsal Tekir (Department of Mathematics Marmara University) ;
  • Eda Yildiz (Department of Mathematics Yildiz Technical University)
  • Received : 2023.01.11
  • Accepted : 2023.05.09
  • Published : 2024.01.31

Abstract

Let R be a commutative ring with nonzero identity and M be an R-module. In this paper, we first introduce the concept of S-idempotent element of R. Then we give a relation between S-idempotents of R and clopen sets of S-Zariski topology. After that we define S-pure ideal which is a generalization of the notion of pure ideal. In fact, every pure ideal is S-pure but the converse may not be true. Afterwards, we show that there is a relation between S-pure ideals of R and closed sets of S-Zariski topology that are stable under generalization.

Keywords

Acknowledgement

The authors acknowledge Prof. Dr. Abolfazl Tarizadeh for his helpful comments on the paper. Also we would like to thank the referee for his/her comments and corrections.

References

  1. J. Abuhlail, A Zariski topology for modules, Comm. Algebra 39 (2011), no. 11, 4163-4182. https://doi.org/10.1080/00927872.2010.519748
  2. D. D. Anderson, T. Arabaci, U Tekir, and S. Ko,c, On S-multiplication modules, Comm. Algebra 48 (2020), no. 8, 3398-3407. https://doi.org/10.1080/00927872.2020.1737873
  3. H. Ansari-Toroghy and F. Farshadifar, The Zariski topology on the second spectrum of a module, In Algebra Colloquium (Vol. 21, No. 04, pp. 671-688). Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and Suzhou University, 2014. https://doi.org/10.1142/S1005386714000625
  4. M. F. Atiyah, Introduction to Commutative Algebra, CRC Press, 2018.
  5. T. Duraivel, Topology on spectrum of modules, J. Ramanujan Math. Soc. 9 (1994), no. 1, 25-34.
  6. A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beitrage zur Algebra und Geometrie/Contributions to Algebra and Geometry, 1-10, 2019.
  7. C. Kim, The Zariski topology on the prime spectrum of a commutative ring, (thesis), California State University, 2018.
  8. M. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, New York, 1971.
  9. C. P. Lu, Spectra of modules, Comm. Algebra 23 (1995), no. 10, 3741-3752. https://doi.org/10.1080/00927879508825430
  10. C. P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999), no. 3, 417-432.
  11. R. L. McCasland, M. E. Moore, and P. F. Smith, On the spectrum of a module over a commutative ring, Commun. Algebra 25 (1987), no. 1, 79-103.
  12. E. S. Sevim, T. Arabaci, U Tekir, and S. Koc, On S-prime submodules, Turkish J. Math. 43 (2019), no. 2, 1036-1046. https://doi.org/10.3906/mat-1808-50
  13. A. Tarizadeh, Flat topology and its dual aspects, Comm. Algebra 47 (2019), no. 1, 195-205. https://doi.org/10.1080/00927872.2018.1469637
  14. A. Tarizadeh, On the projectivity of finitely generated flat modules, Extracta Math. 35 (2020), no. 1, 55-67. https://doi.org/10.17398/2605-5686.35.1.55
  15. A. Tarizadeh, Notes on finitely generated flat modules, Bull. Korean Math. Soc. 57 (2020), no. 2, 419-427. https://doi.org/10.4134/BKMS.b190294
  16. A. Tarizadeh and Z. Taheri, Stone type representations and dualities by power set ring, J. Pure Appl. Algebra 225 (2021), no. 11, Paper No. 106737, 14 pp. https://doi.org/10.1016/j.jpaa.2021.106737
  17. E. Yildiz, B. A. Ersoy, and U. Tekir, S-Zariski topology on S-spectrum of modules, Filomat 36 (2022), no. 20, 7103-7112. https://doi.org/10.2298/fil2220103y
  18. E. Yildiz, B. A. Ersoy, U. Tekir, and S. Koc, On S-Zariski topology, Comm. Algebra 49 (2021), no. 3, 1212-1224. https://doi.org/10.1080/00927872.2020.1831006