DOI QR코드

DOI QR Code

TERMINAL SPACES OF MONOIDS

  • Amartya Goswami (Department of Mathematics and Applied Mathematics University of Johannesburg, National Institute for Theoretical and Computational Sciences (NITheCS))
  • 투고 : 2023.04.26
  • 심사 : 2023.08.02
  • 발행 : 2024.01.31

초록

The purpose of this note is a wide generalization of the topological results of various classes of ideals of rings, semirings, and modules, endowed with Zariski topologies, to r-strongly irreducible r-ideals (endowed with Zariski topologies) of monoids, called terminal spaces. We show that terminal spaces are T0, quasi-compact, and every nonempty irreducible closed subset has a unique generic point. We characterize rarithmetic monoids in terms of terminal spaces. Finally, we provide necessary and sufficient conditions for the subspaces of r-maximal r-ideals and r-prime r-ideals to be dense in the corresponding terminal spaces.

키워드

과제정보

The author would like to express sincere gratitude to the anonymous referee for their meticulous review and invaluable feedback, which made a significant contribution to improving the presentation of the paper.

참고문헌

  1. H. Ansari-Toroghy and D. Hassanzadeh-Lelekaami, On the prime spectrum of top modules, Algebra Discrete Math. 11 (2011), no. 1, 1-16.
  2. R. E. Atani and S. E. Atani, Ideal theory in commutative semirings, Bul. Acad. Stiinte Repub. Mold. Mat. 2008 (2008), no. 2, 14-23.
  3. A. Azizi, Strongly irreducible ideals, J. Aust. Math. Soc. 84 (2008), no. 2, 145-154. https://doi.org/10.1017/S1446788708000062
  4. G. Birkhoff and O. Frink Jr., Representations of lattices by sets, Trans. Amer. Math. Soc. 64 (1948), 299-316. https://doi.org/10.2307/1990504
  5. R. L. Blair, Ideal lattices and the structure of rings, Trans. Amer. Math. Soc. 75 (1953), 136-153. https://doi.org/10.2307/1990782
  6. N. Bourbaki, Elements of mathematics: Commutative algebra, Addison-Wesley, Reading, MA, 1972.
  7. L. Fuchs, Uber die Ideale arithmetischer Ringe, Comment. Math. Helv. 23 (1949), 334-341. https://doi.org/10.1007/BF02565607
  8. A. Grothendieck, Elements de geometrie algebrique. I. Le langage des schemas, Inst. Hautes Etudes Sci. Publ. Math. 4 (1960), 228 pp.
  9. F. Halter-Koch, Ideal systems: An introduction to multiplicative ideal theory, Monographs and Textbooks in Pure and Applied Mathematics, 211, Marcel Dekker, Inc., New York, 1998.
  10. F. Halter-Koch, Multiplicative ideal theory in the context of commutative monoids, Commutative algebra-Noetherian and non-Noetherian perspectives, 203-231, Springer, 2011.
  11. S. C. Han, W.-J. Han, and W.-S. Pae, Properties of the subtractive prime spectrum of a semimodule, Hacet. J. Math. Stat. 52 (2023), no. 3, 546-559. https://doi.org/10.15672/hujms.1127185
  12. S.-C. Han, W.-S. Pae, and J.-N. Ho, Topological properties of the prime spectrum of a semimodule, J. Algebra 566 (2021), 205-221. https://doi.org/10.1016/j.jalgebra.2020.08.033
  13. W. J. Heinzer, L. J. Ratliff, and D. E. Rush, Strongly irreducible ideals of a commutative ring, J. Pure Appl. Algebra 166 (2002), no. 3, 267-275. https://doi.org/10.1016/S0022-4049(01)00043-3
  14. K. Iseki, Ideal theory of semiring, Proc. Japan Acad. 32 (1956), 554-559. http://projecteuclid.org/euclid.pja/1195525272 https://doi.org/10.2183/pjab1945.32.201
  15. A. Khaksari, M. Ershad, and H. Sharif, Strongly irreducible submodules of modules, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 1189-1196. https://doi.org/10.1007/s10114-005-0681-7
  16. J. D. McKnight Jr., On the characterisation of rings of functions, Purdu doctoral thesis, 1953.
  17. R. Naghipour and M. Sedghi, Some characterizations of strongly irreducible submodules in arithmetical and Noetherian modules, arXiv:2101.01695v1/ 2101.01695v1
  18. N. Schwartz, Strongly irreducible ideals and truncated valuations, Comm. Algebra 44 (2016), no. 3, 1055-1087. https://doi.org/10.1080/00927872.2014.999926
  19. G. Yesilot, On the prime spectrum of a module over noncommutative rings, Int. J. Algebra 5 (2011), no. 9-12, 523-528.
  20. G. Zhang and W. Tong, Spectral spaces of top right R-modules, J. Nanjing Univ. Math. Biq. 17 (2000), no. 1, 15-20.