DOI QR코드

DOI QR Code

A study of glass and carbon fibers in FRAC utilizing machine learning approach

  • Ankita Upadhya (Department of Civil Engineering, Shoolini University) ;
  • M. S. Thakur (Department of Civil Engineering, Shoolini University) ;
  • Nitisha Sharma (Department of Civil Engineering, Shoolini University) ;
  • Fadi H. Almohammed (Department of Civil Engineering, Shoolini University) ;
  • Parveen Sihag (Department of Civil Engineering, Chandigarh University)
  • 투고 : 2021.11.09
  • 심사 : 2023.09.09
  • 발행 : 2024.02.25

초록

Asphalt concrete (AC), is a mixture of bitumen and aggregates, which is very sensitive in the design of flexible pavement. In this study, the Marshall stability of the glass and carbon fiber bituminous concrete was predicted by using Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and M5P Tree machine learning algorithms. To predict the Marshall stability, nine inputs parameters i.e., Bitumen, Glass and Carbon fibers mixed in 100:0, 75:25, 50:50, 25:75, 0:100 percentage (designated as 100GF:0CF, 75GF:25CF, 50GF:50 CF, 25GF:75CF, 0GF:100CF), Bitumen grade (VG), Fiber length (FL), and Fiber diameter (FD) were utilized from the experimental and literary data. Seven statistical indices i.e., coefficient of correlation (CC), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), root relative squared error (RRSE), Scattering index (SI), and BIAS were applied to assess the effectiveness of the developed models. According to the performance evaluation results, Artificial neural network (ANN) was outperforming among other models with CC values as 0.9147 and 0.8648, MAE values as 1.3757 and 1.978, RMSE values as 1.843 and 2.6951, RAE values as 39.88 and 49.31, RRSE values as 40.62 and 50.50, SI values as 0.1379 and 0.2027 and BIAS value as -0.1 290 and -0.2357 in training and testing stage respectively. The Taylor diagram (testing stage) also confirmed that the ANN-based model outperforms the other models. Results of sensitivity analysis showed that the fiber length is the most influential in all nine input parameters whereas the fiber combination of 25GF:75CF was the most effective among all the fiber mixes in Marshall stability.

키워드

과제정보

We, the authors, would like to express our gratitude to the researchers whose findings we have mentioned in this work.

참고문헌

  1. Abd, A.M. and Abd, S.M. (2017), "Modelling the strength of lightweight foamed concrete using support vector machine (SVM)", Case Stud. Constr. Mater., 6, 8-15. https://doi.org/10.1016/j.cscm.2016.11.002.
  2. Ahmadi, M., Naderpour, H. and Kheyroddin, A. (2017), "ANN model for predicting the compressive strength of circular steel-confined concrete", Int. J. Civil Eng., 15(2), 213-221. https://doi.org/10.1007/s40999-016-0096-0.
  3. Ahmed, T., Branci, T., Yahia, A. and Ezziane, K. (2020), "Effect of recycled polypropylene fiber on high strength concrete and normal strength concrete properties", Adv. Mater. Res., 10(4), 267-284. https://doi.org/10.12989/amr.2021.10.4.267.
  4. Ali, M., Talha, A. and Berkouk, E.M. (2020), "New M5P model tree-based control for doubly fed induction generator in wind energy conversion system", Wind Energy, 23(9), 1831-1845. https://doi.org/10.1002/we.2519.
  5. Almasi, S.N., Bagherpour, R., Mikaeil, R., Ozcelik, Y. and Kalhori, H. (2017), "Predicting the building stone cutting rate based on rock properties and device pullback amperage in quarries using M5P model tree", Geotech. Geol. Eng., 35(4), 1311-1326. https://doi.org/10.1007/s10706-017-0177-0.
  6. Ameri, M., Nemati, M. and Shaker, H. (2019), "Experimental and numerical investigation of the properties of the Hot Mix Asphalt Concrete with basalt and glass fiber", Fratt. Integrita Strutt., 13(50), 149-162. https://doi.org/10.3221/IGF-ESIS.50.14.
  7. Angelaki, A., Singh Nain, S., Singh, V. and Sihag, P. (2021), "Estimation of models for cumulative infiltration of soil using machine learning methods", ISH J. Hydraul. Eng., 27(2), 162-169. https://doi.org/10.1080/09715010.2018.1531274.
  8. ASTM C 127 (1992), Test Method for Specific Gravity and Adsorption of Coarse Aggregate, ASTM International, West Conshohocken, PA, USA.
  9. ASTM C 131 (2006), Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate, ASTM International, West Conshohocken, PA, USA.
  10. ASTM C-128 (1992), Standard Test Method for Specific Gravity and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, USA.
  11. ASTM D36/D36M-14 (2014), Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus), ASTM International, West Conshohocken, PA, USA.
  12. ASTM D4791-19 (2019), Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate, ASTM International, West Conshohocken, PA, USA.
  13. ASTM D5/D5M-20 (2020), Standard Test Method for Penetration of Bituminous Materials, ASTM International, West Conshohocken, PA, USA.
  14. ASTM D6913-04 (2004), Standard Test Methods for Particle Size Distribution of Soils, ASTM International, West Conshohocken, PA, USA.
  15. ASTM D70/D70M-21 (2021), Standard Test Method for Specific Gravity and Density of Semi-Solid Asphalt Binder (Pycnometer Method), ASTM International, West Conshohocken, PA, USA.
  16. ASTM D92-18 (2018), Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester, ASTM International, West Conshohocken, PA, USA.
  17. Basyigit, C., Akkurt, I., Kilincarslan, S. and Beycioglu, A. (2010), "Prediction of compressive strength of heavyweight concrete by ANN and FL models", Neural Comput. Appl., 19(4), 507-513. https://doi.org/10.1007/s00521-009-0292-9.
  18. Behnood, A. and Daneshvar, D. (2020), "A machine learning study of the dynamic modulus of asphalt concretes: An application of M5P model tree algorithm", Constr. Build. Mater., 262, 120544. https://doi.org/10.1016/j.conbuildmat.2020.120544.
  19. Blaifi, S.A., Moulahoum, S., Benkercha, R., Taghezouit, B. and Saim, A. (2018), "M5P model tree based fast fuzzy maximum power point tracker", Solar Energy, 163, 405-424. https://doi.org/10.1016/j.solener.2018.01.071.
  20. Buckley, J.J. and Hayashi, Y. (1994), "Fuzzy neural networks: A survey", Fuzzy Sets Syst., 66(1), 1-13.  https://doi.org/10.1016/0165-0114(94)90297-6
  21. Cavaleri, L., Chatzarakis, G.E., Di Trapani, F., Douvika, M.G., Roinos, K., Vaxevanidis, N.M. and Asteris, P.G. (2017), "Modeling of surface roughness in electro-discharge machining using artificial neural networks", Adv. Mater. Res., 6(2), 169. https://doi.org/10.12989/amr.2017.6.2.169.
  22. Chen, H. and Xu, Q. (2010), "Experimental study of fibers in stabilizing and reinforcing asphalt binder", Fuel, 89(7), 1616-1622. https://doi.org/10.1016/j.fuel.2009.08.020.
  23. Cook, R., Lapeyre, J., Ma, H. and Kumar, A. (2019), "Prediction of compressive strength of concrete: Critical comparison of performance of a hybrid machine learning model with standalone models", J. Mater. Civil Eng., 31(11), 04019255. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002902.
  24. Deepa, C., SathiyaKumari, K. and Sudha, V.P. (2010), "Prediction of the compressive strength of high performance concrete mix using tree based modeling", Int. J. Comput. Appl., 6(5),18-24. https://doi.org/10.5120/1076-1406
  25. Demirel, M.C., Venancio, A. and Kahya, E. (2009), "Flow forecast by SWAT model and ANN in Pracana basin, Portugal", Adv. Eng. Softw., 40(7), 467-473. https://doi.org/10.1016/j.advengsoft.2008.08.002.
  26. Farooq, F., Amin N.M., Khan, K., Sadiq, R.M., Javed, F.M., Aslam, F. and Alyousef, R. (2020), "A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC)", Appl. Sci., 10, 2-10. https://doi.org/10.3390/app10207330.
  27. Fu, J., Liu, H.B. and Cheng, Y.C. (2007), "Mechanical parameter measuring and contrastive analysis on pavement performance of glass fiber reinforced bituminous mixtures", International Conference on Transportation Engineering 2007, Chengdu, China, July.
  28. Geckil, T. and Ahmedzade, P. (2020), "Effects of carbon fiber on performance properties of asphalt mixtures", Baltic J. Road Bridge Eng., 15(2), 49-65. https://doi.org/10.7250/bjrbe.2020-15.472.
  29. Goh, A.T.C. and Goh, S.H. (2007), "Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data", Comput. Geotech., 34(5), 410-421. https://doi.org/10.1016/j.compgeo.2007.06.001.
  30. Honarmand, M., Tanzadeh, J. and Beiranvand, M. (2019), "Bitumen and its modifier for use in pavement engineering", Sustainab. Constr. Build. Mater., 2019, 249-270. http://doi.org/10.5772/intechopen.82489.
  31. Ibrahim, D. (2016), "An overview of soft computing", Procedia Comput. Sci., 102, 34-38. https://doi.org/10.1016/j.procs.2016.09.366.
  32. Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997), "Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]", IEEE Trans. Automat. Control, 42(10), 1482-1484. https://doi.org/10.1109/TAC.1997.633847
  33. Khabiri, M.M. and Alidadi, M. (2016), "The experimental study of the effect of glass and carbon fiber on physical and micro-structure behaviour of asphalt", Int. J. Integrat. Eng., 8(3), 1.
  34. Khater, A., Luo, D., Abdelsalam, M., Yue, Y., Hou, Y. and Ghazy, M. (2021), "Laboratory evaluation of asphalt mixture performance using composite admixtures of lignin and glass fibers", Appl. Sci., 11(1), 364. https://doi.org/10.3390/app11010364.
  35. Li, Z., Cheng, C., Kwan, M.P., Tong, X. and Tian, S. (2019), "Identifying asphalt pavement distress using UAV LiDAR point cloud data and random forest classification", ISPRS Int. J. Geo-Informat., 8(1), 39. https://doi.org/10.3390/ijgi8010039.
  36. Mawat, H.Q. and Ismael, M.Q. (2020), "Assessment of moisture susceptibility for asphalt mixtures modified by carbon fibers", Civil Eng. J., 6(2), 304-317. http://doi.org/10.28991/cej-2020-03091472.
  37. Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers", Adv. Mater. Res., 8(2), 137-154. https://doi.org/10.12989/amr.2019.8.2.137.
  38. Moghadas Nejad, F., Vadood, M. and Baeetabar, S. (2014), "Investigating the mechanical properties of carbon fiber-reinforced asphalt concrete", Road Mater. Pavement Des., 15(2), 465-475. https://doi.org/10.1080/14680629.2013.876442.
  39. Pamudji, G., Haryanto, Y., Hu, H.T., Asriani, F. and Nugroho, L. (2021), "The flexural behavior of RC beams with sand-coated polypropylene waste coarse aggregate at different w/c ratios", Adv. Mater. Res., 10(4), 313-329. https://doi.org/10.12989/amr.2021.10.4.313.
  40. Park, J.Y., Yoon, Y.G. and Oh, T.K. (2019), "Prediction of concrete strength with P-, S-, R-wave velocities by support vector machine (SVM) and artificial neural network (ANN)", Appl. Sci., 9(19), 4053. https://doi.org/10.3390/app9194053.
  41. Reddy, T.C.S. (2018), "Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network", Front. Struct. Civil Eng., 12(4), 490-503. https://doi.org/10.1007/s11709-017-0445-3.
  42. Salcedo-Sanz, S., Rojo-Alvarez, J.L., Martinez-Ramon, M. and Camps-Valls, G. (2014), "Support vector machines in engineering: An overview", Wiley Interdiscip. Rev.: Data Min. Knowl. Discov., 4(3), 234-267. https://doi.org/10.1002/widm.1125.
  43. Shanbara, H.K. (2011), "Effect of carbon fiber on the performance of reinforced asphalt concrete mixture", Muthanna J. Eng. Technol., 1(1), 39-51.
  44. Singh, B., Sihag, P., Tomar, A. and SEHGAL, A. (2019), "Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches", J. Mater. Eng. Struct., 6(4), 583-592.
  45. Thakur, M.S., Pandhiani, S.M., Kashyap, V., Upadhya, A. and Sihag, P. (2021), "Predicting bond strength of FRP bars in concrete using soft computing techniques", Arab. J. Sci. Eng., 46(5), 4951-4969. https://doi.org/10.1007/s13369-020-05314-8.
  46. Upadhya, A., Thakur, M.S., Sharma, N. and Sihag, P. (2021a), "Assessment of soft computing-based techniques for the prediction of marshall stability of asphalt concrete reinforced with glass fiber", Int. J. Pavement Res. Technol., 15(6), 1366-1385. https://doi.org/10.1007/s42947-021-00094-2.
  47. Upadhya, A., Thakur, M.S., Pandhian, S.M. and Tayal, S. (2021b), "Estimation of Marshall stability of asphalt concrete mix using neural network and M5P tree", Computational Technologies in Materials, CRC Press, Boca Raton, FL, USA.
  48. Upadhyay, S., Upadhya, A., Salehi, W. and Gupta, G. (2021c), "The medical aspects of EMI effect on patients implanted with pacemakers", Mater. Today: Proc., 45, 5243-5248. https://doi.org/10.1016/j.matpr.2021.01.826.
  49. Vadood, M., Johari, M.S. and Rahai, A. (2015), "Developing a hybrid artificial neural network-genetic algorithm model to predict resilient modulus of polypropylene/polyester fiber-reinforced asphalt concrete", J. Textile Inst., 106(11), 1239-1250. https://doi.org/10.1080/00405000.2014.985882.
  50. Vo, H.V., Park, D.W., Seo, W.J. and Yoo, B.S. (2017), "Evaluation of asphalt mixture modified with graphite and carbon fibers for winter adaptation: Thermal conductivity improvement", J. Mater. Civil Eng., 29(1), 04016176. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001675.
  51. Vyas, V., Singh, A.P. and Srivastava, A. (2020), "Prediction of asphalt pavement condition using FWD deflection basin parameters and artificial neural networks", Road Mater. Pavement Des., 22(12), 2748- 2766. https://doi.org/10.1080/14680629.2020.1797855.
  52. Yan, K. and Shi, C. (2010), "Prediction of elastic modulus of normal and high strength concrete by support vector machine", Constr. Build. Mater., 24(8), 1479-1485. https://doi.org/10.1016/j.conbuildmat.2010.01.006.
  53. Yildirim, Z.B. and Karacasu, M. (2019), "Modelling of waste rubber and glass fibber with response surface method in hot mix asphalt", Constr. Build. Mater., 227, 117070. https://doi.org/10.1016/j.conbuildmat.2019.117070.
  54. Zarei, A., Zarei, M. and Janmohammadi, O. (2019), "Evaluation of the effect of lignin and glass fiber on the technical properties of asphalt mixtures", Arab. J. Sci. Eng., 44(5), 4085-4094. https://doi.org/10.1007/s13369-018-3273-4.
  55. Zealand, C.M., Burn, D.H. and Simonovic, S.P. (1999), "Short term streamflow forecasting using artificial neural networks", J. Hydrol., 214(1-4), 32-48. https://doi.org/10.1016/S0022-1694(98)00242-X.
  56. Zheng, Y.X., Cai, Y.C. and Zhang, Y.M. (2011), "Laboratory study of pavement performance of basalt fibermodified asphalt mixture", Adv. Mater. Res., 266, 175-179. https://doi.org/10.4028/www.scientific.net/AMR.266.175.