Acknowledgement
We, the authors, would like to express our gratitude to the researchers whose findings we have mentioned in this work.
References
- Abd, A.M. and Abd, S.M. (2017), "Modelling the strength of lightweight foamed concrete using support vector machine (SVM)", Case Stud. Constr. Mater., 6, 8-15. https://doi.org/10.1016/j.cscm.2016.11.002.
- Ahmadi, M., Naderpour, H. and Kheyroddin, A. (2017), "ANN model for predicting the compressive strength of circular steel-confined concrete", Int. J. Civil Eng., 15(2), 213-221. https://doi.org/10.1007/s40999-016-0096-0.
- Ahmed, T., Branci, T., Yahia, A. and Ezziane, K. (2020), "Effect of recycled polypropylene fiber on high strength concrete and normal strength concrete properties", Adv. Mater. Res., 10(4), 267-284. https://doi.org/10.12989/amr.2021.10.4.267.
- Ali, M., Talha, A. and Berkouk, E.M. (2020), "New M5P model tree-based control for doubly fed induction generator in wind energy conversion system", Wind Energy, 23(9), 1831-1845. https://doi.org/10.1002/we.2519.
- Almasi, S.N., Bagherpour, R., Mikaeil, R., Ozcelik, Y. and Kalhori, H. (2017), "Predicting the building stone cutting rate based on rock properties and device pullback amperage in quarries using M5P model tree", Geotech. Geol. Eng., 35(4), 1311-1326. https://doi.org/10.1007/s10706-017-0177-0.
- Ameri, M., Nemati, M. and Shaker, H. (2019), "Experimental and numerical investigation of the properties of the Hot Mix Asphalt Concrete with basalt and glass fiber", Fratt. Integrita Strutt., 13(50), 149-162. https://doi.org/10.3221/IGF-ESIS.50.14.
- Angelaki, A., Singh Nain, S., Singh, V. and Sihag, P. (2021), "Estimation of models for cumulative infiltration of soil using machine learning methods", ISH J. Hydraul. Eng., 27(2), 162-169. https://doi.org/10.1080/09715010.2018.1531274.
- ASTM C 127 (1992), Test Method for Specific Gravity and Adsorption of Coarse Aggregate, ASTM International, West Conshohocken, PA, USA.
- ASTM C 131 (2006), Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate, ASTM International, West Conshohocken, PA, USA.
- ASTM C-128 (1992), Standard Test Method for Specific Gravity and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, USA.
- ASTM D36/D36M-14 (2014), Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus), ASTM International, West Conshohocken, PA, USA.
- ASTM D4791-19 (2019), Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate, ASTM International, West Conshohocken, PA, USA.
- ASTM D5/D5M-20 (2020), Standard Test Method for Penetration of Bituminous Materials, ASTM International, West Conshohocken, PA, USA.
- ASTM D6913-04 (2004), Standard Test Methods for Particle Size Distribution of Soils, ASTM International, West Conshohocken, PA, USA.
- ASTM D70/D70M-21 (2021), Standard Test Method for Specific Gravity and Density of Semi-Solid Asphalt Binder (Pycnometer Method), ASTM International, West Conshohocken, PA, USA.
- ASTM D92-18 (2018), Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester, ASTM International, West Conshohocken, PA, USA.
- Basyigit, C., Akkurt, I., Kilincarslan, S. and Beycioglu, A. (2010), "Prediction of compressive strength of heavyweight concrete by ANN and FL models", Neural Comput. Appl., 19(4), 507-513. https://doi.org/10.1007/s00521-009-0292-9.
- Behnood, A. and Daneshvar, D. (2020), "A machine learning study of the dynamic modulus of asphalt concretes: An application of M5P model tree algorithm", Constr. Build. Mater., 262, 120544. https://doi.org/10.1016/j.conbuildmat.2020.120544.
- Blaifi, S.A., Moulahoum, S., Benkercha, R., Taghezouit, B. and Saim, A. (2018), "M5P model tree based fast fuzzy maximum power point tracker", Solar Energy, 163, 405-424. https://doi.org/10.1016/j.solener.2018.01.071.
- Buckley, J.J. and Hayashi, Y. (1994), "Fuzzy neural networks: A survey", Fuzzy Sets Syst., 66(1), 1-13. https://doi.org/10.1016/0165-0114(94)90297-6
- Cavaleri, L., Chatzarakis, G.E., Di Trapani, F., Douvika, M.G., Roinos, K., Vaxevanidis, N.M. and Asteris, P.G. (2017), "Modeling of surface roughness in electro-discharge machining using artificial neural networks", Adv. Mater. Res., 6(2), 169. https://doi.org/10.12989/amr.2017.6.2.169.
- Chen, H. and Xu, Q. (2010), "Experimental study of fibers in stabilizing and reinforcing asphalt binder", Fuel, 89(7), 1616-1622. https://doi.org/10.1016/j.fuel.2009.08.020.
- Cook, R., Lapeyre, J., Ma, H. and Kumar, A. (2019), "Prediction of compressive strength of concrete: Critical comparison of performance of a hybrid machine learning model with standalone models", J. Mater. Civil Eng., 31(11), 04019255. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002902.
- Deepa, C., SathiyaKumari, K. and Sudha, V.P. (2010), "Prediction of the compressive strength of high performance concrete mix using tree based modeling", Int. J. Comput. Appl., 6(5),18-24. https://doi.org/10.5120/1076-1406
- Demirel, M.C., Venancio, A. and Kahya, E. (2009), "Flow forecast by SWAT model and ANN in Pracana basin, Portugal", Adv. Eng. Softw., 40(7), 467-473. https://doi.org/10.1016/j.advengsoft.2008.08.002.
- Farooq, F., Amin N.M., Khan, K., Sadiq, R.M., Javed, F.M., Aslam, F. and Alyousef, R. (2020), "A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC)", Appl. Sci., 10, 2-10. https://doi.org/10.3390/app10207330.
- Fu, J., Liu, H.B. and Cheng, Y.C. (2007), "Mechanical parameter measuring and contrastive analysis on pavement performance of glass fiber reinforced bituminous mixtures", International Conference on Transportation Engineering 2007, Chengdu, China, July.
- Geckil, T. and Ahmedzade, P. (2020), "Effects of carbon fiber on performance properties of asphalt mixtures", Baltic J. Road Bridge Eng., 15(2), 49-65. https://doi.org/10.7250/bjrbe.2020-15.472.
- Goh, A.T.C. and Goh, S.H. (2007), "Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data", Comput. Geotech., 34(5), 410-421. https://doi.org/10.1016/j.compgeo.2007.06.001.
- Honarmand, M., Tanzadeh, J. and Beiranvand, M. (2019), "Bitumen and its modifier for use in pavement engineering", Sustainab. Constr. Build. Mater., 2019, 249-270. http://doi.org/10.5772/intechopen.82489.
- Ibrahim, D. (2016), "An overview of soft computing", Procedia Comput. Sci., 102, 34-38. https://doi.org/10.1016/j.procs.2016.09.366.
- Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997), "Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]", IEEE Trans. Automat. Control, 42(10), 1482-1484. https://doi.org/10.1109/TAC.1997.633847
- Khabiri, M.M. and Alidadi, M. (2016), "The experimental study of the effect of glass and carbon fiber on physical and micro-structure behaviour of asphalt", Int. J. Integrat. Eng., 8(3), 1.
- Khater, A., Luo, D., Abdelsalam, M., Yue, Y., Hou, Y. and Ghazy, M. (2021), "Laboratory evaluation of asphalt mixture performance using composite admixtures of lignin and glass fibers", Appl. Sci., 11(1), 364. https://doi.org/10.3390/app11010364.
- Li, Z., Cheng, C., Kwan, M.P., Tong, X. and Tian, S. (2019), "Identifying asphalt pavement distress using UAV LiDAR point cloud data and random forest classification", ISPRS Int. J. Geo-Informat., 8(1), 39. https://doi.org/10.3390/ijgi8010039.
- Mawat, H.Q. and Ismael, M.Q. (2020), "Assessment of moisture susceptibility for asphalt mixtures modified by carbon fibers", Civil Eng. J., 6(2), 304-317. http://doi.org/10.28991/cej-2020-03091472.
- Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers", Adv. Mater. Res., 8(2), 137-154. https://doi.org/10.12989/amr.2019.8.2.137.
- Moghadas Nejad, F., Vadood, M. and Baeetabar, S. (2014), "Investigating the mechanical properties of carbon fiber-reinforced asphalt concrete", Road Mater. Pavement Des., 15(2), 465-475. https://doi.org/10.1080/14680629.2013.876442.
- Pamudji, G., Haryanto, Y., Hu, H.T., Asriani, F. and Nugroho, L. (2021), "The flexural behavior of RC beams with sand-coated polypropylene waste coarse aggregate at different w/c ratios", Adv. Mater. Res., 10(4), 313-329. https://doi.org/10.12989/amr.2021.10.4.313.
- Park, J.Y., Yoon, Y.G. and Oh, T.K. (2019), "Prediction of concrete strength with P-, S-, R-wave velocities by support vector machine (SVM) and artificial neural network (ANN)", Appl. Sci., 9(19), 4053. https://doi.org/10.3390/app9194053.
- Reddy, T.C.S. (2018), "Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network", Front. Struct. Civil Eng., 12(4), 490-503. https://doi.org/10.1007/s11709-017-0445-3.
- Salcedo-Sanz, S., Rojo-Alvarez, J.L., Martinez-Ramon, M. and Camps-Valls, G. (2014), "Support vector machines in engineering: An overview", Wiley Interdiscip. Rev.: Data Min. Knowl. Discov., 4(3), 234-267. https://doi.org/10.1002/widm.1125.
- Shanbara, H.K. (2011), "Effect of carbon fiber on the performance of reinforced asphalt concrete mixture", Muthanna J. Eng. Technol., 1(1), 39-51.
- Singh, B., Sihag, P., Tomar, A. and SEHGAL, A. (2019), "Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches", J. Mater. Eng. Struct., 6(4), 583-592.
- Thakur, M.S., Pandhiani, S.M., Kashyap, V., Upadhya, A. and Sihag, P. (2021), "Predicting bond strength of FRP bars in concrete using soft computing techniques", Arab. J. Sci. Eng., 46(5), 4951-4969. https://doi.org/10.1007/s13369-020-05314-8.
- Upadhya, A., Thakur, M.S., Sharma, N. and Sihag, P. (2021a), "Assessment of soft computing-based techniques for the prediction of marshall stability of asphalt concrete reinforced with glass fiber", Int. J. Pavement Res. Technol., 15(6), 1366-1385. https://doi.org/10.1007/s42947-021-00094-2.
- Upadhya, A., Thakur, M.S., Pandhian, S.M. and Tayal, S. (2021b), "Estimation of Marshall stability of asphalt concrete mix using neural network and M5P tree", Computational Technologies in Materials, CRC Press, Boca Raton, FL, USA.
- Upadhyay, S., Upadhya, A., Salehi, W. and Gupta, G. (2021c), "The medical aspects of EMI effect on patients implanted with pacemakers", Mater. Today: Proc., 45, 5243-5248. https://doi.org/10.1016/j.matpr.2021.01.826.
- Vadood, M., Johari, M.S. and Rahai, A. (2015), "Developing a hybrid artificial neural network-genetic algorithm model to predict resilient modulus of polypropylene/polyester fiber-reinforced asphalt concrete", J. Textile Inst., 106(11), 1239-1250. https://doi.org/10.1080/00405000.2014.985882.
- Vo, H.V., Park, D.W., Seo, W.J. and Yoo, B.S. (2017), "Evaluation of asphalt mixture modified with graphite and carbon fibers for winter adaptation: Thermal conductivity improvement", J. Mater. Civil Eng., 29(1), 04016176. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001675.
- Vyas, V., Singh, A.P. and Srivastava, A. (2020), "Prediction of asphalt pavement condition using FWD deflection basin parameters and artificial neural networks", Road Mater. Pavement Des., 22(12), 2748- 2766. https://doi.org/10.1080/14680629.2020.1797855.
- Yan, K. and Shi, C. (2010), "Prediction of elastic modulus of normal and high strength concrete by support vector machine", Constr. Build. Mater., 24(8), 1479-1485. https://doi.org/10.1016/j.conbuildmat.2010.01.006.
- Yildirim, Z.B. and Karacasu, M. (2019), "Modelling of waste rubber and glass fibber with response surface method in hot mix asphalt", Constr. Build. Mater., 227, 117070. https://doi.org/10.1016/j.conbuildmat.2019.117070.
- Zarei, A., Zarei, M. and Janmohammadi, O. (2019), "Evaluation of the effect of lignin and glass fiber on the technical properties of asphalt mixtures", Arab. J. Sci. Eng., 44(5), 4085-4094. https://doi.org/10.1007/s13369-018-3273-4.
- Zealand, C.M., Burn, D.H. and Simonovic, S.P. (1999), "Short term streamflow forecasting using artificial neural networks", J. Hydrol., 214(1-4), 32-48. https://doi.org/10.1016/S0022-1694(98)00242-X.
- Zheng, Y.X., Cai, Y.C. and Zhang, Y.M. (2011), "Laboratory study of pavement performance of basalt fibermodified asphalt mixture", Adv. Mater. Res., 266, 175-179. https://doi.org/10.4028/www.scientific.net/AMR.266.175.