DOI QR코드

DOI QR Code

Assessing the impact of nanoclay on the permeability and geotechnical properties of fine-grained soils in landfill liners

  • Received : 2023.02.18
  • Accepted : 2023.07.10
  • Published : 2024.02.25

Abstract

Presented Article evaluates the effect of nanoclay on permeability, compressive strength, and plasticity behavior of fine-grained soil related to the Tabriz landfill site. In this regard, comprehensive experimental study was performed on taken soil samples (42 specimens) with aim of design high-performance liners for Tabriz landfill. The samples was mixed by 0% (control) 3%, 6% and 9% nanoclay and prepared in 1, 7, 14 and 28 days before testing stage. Index tests like particle-size, permeability, atterberg limits, and uniaxial compressive strength (UCS) was conducted on samples. The results show that studied soil is classified as CL in USCS classification and atterberg limits measured as LL is 37, PL is 20.67, and PI is 16.33 which increase into 75, 45, and 30. The assessment presented the LL was increased about 20.27% based on increasing in nanoclay from 0% to 9%. These variations for PL and PI were 21.77% and 18.37%, respectively. Also, the and soil's compressive strength is increase from 120 kPa to 188 kPa and permeability is estimated as 4.25×10-6 m/s which reduced into the 6.34×10-9 m/s with respect the naboclay content increases form 0% to 9%.

Keywords

References

  1. Amarasiri, H.A.D.B. and Adassooriya, N.M. (2021), "Nanotechnology assisted remediation of polluted soils", Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology, John Wiley & Sons, Hoboken, NJ, USA.
  2. ASTM D1140 (2017), Standard Test Methods for Amount of Material in Soil Finer than No. 200 (75 micrometer) Sieve, ASTM International, West Conshohocken, PA, USA.
  3. ASTM D2166 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, ASTM International, West Conshohocken, PA, USA.
  4. ASTM D2434 (2020), Standard Test Methods for Measurement of Hydraulic Conductivity of Coarse-Grained Soils, ASTM International, ASTM International, West Conshohocken, PA, USA.
  5. ASTM D3080 (2004), Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM International, ASTM International, West Conshohocken, PA, USA.
  6. ASTM D422 (2006), Standard Test Methods for Particle Size Analysis of Soils, ASTM International, West Conshohocken, PA, USA.
  7. ASTM D4318 (2005), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, ASTM International, West Conshohocken, PA, USA.
  8. Azarafza, M., Asghari-Kaljahi, E. and Moshrefy-far M.R. (2015), "Effects of clay nanoparticles added to the bonab landfill soil to reduce the permeability and control of leachate", Iran. J. Environ. Geol., 8(26), 7-17.
  9. Azizpour, A., Azarafza, M. and Akgun, H. (2020), "The impact of municipal waste disposal of heavy metals on environmental pollution: A case study for Tonekabon, Iran", Adv. Environ. Res., 9(3), 175-189. https://doi.org/10.12989/aer.2020.9.3.175.
  10. Bahari, M., Emadi, A.R. and Shahnazari, A. (2016), "Experimental and numerical study of adding nanoclay on reducing seepage loss of ab-bandan", J. Irrig. Water Eng., 6(2), 62-75.
  11. Bethi, B. and Sonawane, S.H. (2018), "Nanomaterials and its application for clean environment", Nanomaterials for Green Energy, Elsevier, Amsterdam, Netherlands.
  12. Calitz, F. (2022), "Proposed system to facilitate use of pedological information in preliminary stage geotechnical investigations", Doctoral Dissertation, North-West University, Potchefstroom, South Africa.
  13. Chaudhary, V., Yadav, J.S. and Dutta, R.K. (2023), "A critical appraisal on some geotechnical properties of soil stabilised with nano-additives", Environ. Dev. Sustain., 2023, 1-64. https://doi.org/10.1007/s10668-023-03277-y.
  14. Debnath, S., Nguong, C.W. and Lee, S.N.B. (2013), "A review on natural fibre reinforced polymer composites", Int. J. Chem. Biomol. Metall. Mater. Sci. Eng., 7(1), 33-40.
  15. Derakhshani, R. and Alipour, M. (2010), "Remediation of acid mine drainage by using tailings decant water as a neutralization agent in Sarcheshmeh copper mine", Res. J. Environ. Sci., 4(3), 250-260. https://doi.org/10.3923/rjes.2010.250.260
  16. Farzadnia, N., Ali, A.A.A., Demirboga, R. and Anwar, M.P. (2013), "Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars", Cement Concrete Res., 48, 97-104. https://doi.org/10.1016/j.cemconres.2013.03.005.
  17. Ghazifard, A., Nikoobakht, S. and Azarafza, M. (2016), "Municipal waste landfill site selection based on environmental, geological and geotechnical multi-criteria: A case study", Iran. J. Environ. Technol., 2(1), 49-67.
  18. Hajjizadeh, M., Ghammamy, S., Ganjidoust, H. and Farsad, F. (2020), "Amino acid modified bentonite clay as an eco-friendly adsorbent for landfill leachate treatment", Polish J. Environ. Stud., 29(6), 4089-4099. https://doi.org/10.15244/pjoes/114507.
  19. Hashemi, H., Bahrami, S., Emadi, Z., Shariatipor, H. and Nozari, M. (2021), "Optimization of ammonium adsorption from landfill leachate using montmorillonite/hematite nanocomposite: Response surface method based on central composite design", Desalin. Water Treat, 232, 39-54. https://doi.org/10.5004/dwt.2021.27455.
  20. He, W., Ishikawa, T. and Nguyen, B.T. (2023), "Effect evaluation of grass roots on mechanical properties of unsaturated coarse-grained soil", Transp. Geotech., 38, 100912. https://doi.org/10.1016/j.trgeo.2022.100912.
  21. Herrmann, I., Svensson, M., Ecke, H., Kumpiene, J. and Maurice, C. (2009), "Hydraulic conductivity of fly ash-sewage sludge mixes for use in landfill cover liners", J. Water Res., 43, 3541-3547. https://doi.org/10.1016/j.watres.2009.04.052.
  22. Hussain, M., Mahtab, M.S. and Farooqi, I.H. (2021), "A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment", Adv. Environ. Res., 10(1), 59-86. https://doi.org/10.12989/aer.2021.10.1.059.
  23. Jafari, B. and Abbasian, K. (2018), "Experimental study of the nanoclays effects on soil permeability reduction to preparing Landfill liners vs leachate", J. Geotech. Geol., 14(2), 217-221.
  24. Jafari, B. and Abbasian, K. (2019), "Application of nanoclay filter to permeability reduction for bed soil from industrial effluent transmission channels (Case study)", J. Geotech. Geol., 15(1), 267-271.
  25. Johari, A., Golkarfard, H. and Mesbahi, M. (2022), "The effect of nano-clay stabilizing treatment on the real excavation wall failure: A case study", Sci. Iran., 29(3), 1006-1023. https://doi.org/10.24200/sci.2022.56364.4690.
  26. Jung, B.N., Jung, H.W., Kang, D.H., Kim, G.H. and Shim, J.K. (2021), "A study on the oxygen permeability behavior of nanoclay in a polypropylene/nanoclay nanocomposite by biaxial stretching", Polym., 13(16), 2760. https://doi.org/10.3390/polym13162760.
  27. Kananizadeh, N., Ebadi, T., Khoshniat, S.A. and Mousavirizi, S.E. (2011), "The positive effects of nanoclay on the hydraulic conductivity of compacted Kahrizak clay permeated with landfill leachate", Clean Soil Air Water, 39(7), 605-611. https://doi.org/10.1002/clen.201000298.
  28. Kannan, G. and Sujatha, E.R. (2022), "Geotechnical behaviour of nano-silica stabilized organic soil", Geomech. Eng., 28(3), 239. https://doi.org/10.12989/gae.2022.28.3.239.
  29. Karkush, M.O., Al-Murshedi, A.D. and Karim, H.H. (2020), "Investigation of the impacts of nano-clay on the collapse potential and geotechnical properties of gypseous soils", Jordan J. Civil Eng., 14(4), 537-547.
  30. Karumanchi, M., Avula, G., Pangi, R. and Sirigiri, S. (2020), "Improvement of consistency limits, specific gravities, and permeability characteristics of soft soil with nanomaterial: Nanoclay", Mater. Today: Proc., 33, 232-238. https://doi.org/10.1016/j.matpr.2020.03.832.
  31. Kausar, A., Ahmad, I., Maaza, M. and Eisa, M.H. (2022), "State-of-the-art nanoclay reinforcement in green polymeric nanocomposite: From design to new opportunities", Min., 12(12), 1495. https://doi.org/10.3390/min12121495.
  32. Khalkhali, A.B., Safarzadeh, I. and Manbar, H.R. (2019), "Investigating the effect of nanoclay additives on the geotechnical properties of clay and silt soil", J. Mater. Civil Eng., 3(2), 63-74. http://doi.org/10.22034/jcema.2019.92088.
  33. Khodary, S.M., Negm, A.M. and Tawfik, A. (2018), "Geotechnical properties of the soils contaminated with oils, landfill leachate, and fertilizers", Arab. J. Geosci., 11(2), 1-17. https://doi.org/10.1007/s12517-017-3372-7.
  34. Krishnan, J. and Shukla, S. (2019), "The behaviour of soil stabilised with nanoparticles: An extensive review of the present status and its applications", Arab. J. Geosci., 12, 1-25. https://doi.org/10.1007/s12517-019-4595-6.
  35. Kulanthaivel, P., Selvakumar, S., Soundara, B., Kayalvizhi, V.S. and Bhuvaneshwari, S. (2022a), "Combined effect of nano-silica and randomly distributed fibers on the strength behavior of clay soil", Nanotechnol. Environ. Eng., 7, 1-12. https://doi.org/10.1007/s41204-021-00176-3.
  36. Kulanthaivel, P., Selvakumar, S., Soundara, B. and Krishnaraja, A.R. (2022b), "Strength enhancement of clay soil stabilized with ordinary portland cement, sodium silicate and sodium hydroxide", Int. J. Pavement Res. Technol., 16(5), 1297-1310. https://doi.org/10.1007/s42947-022-00197-4.
  37. Kulanthaivel, P., Soundara, B., Selvakumar, S. and Das, A. (2022c), "Application of waste eggshell as a source of calcium in bacterial bio-cementation to enhance the engineering characteristics of sand", Environ. Sci. Pollut. Res., 29(44), 66450-66461. https://doi.org/10.1007/s11356-022-20484-8.
  38. Kulanthaivel, P., Soundara, B., Selvakumar, S. and Das, A. (2022d), "Effect of bio-cementation on the strength behaviour of clay soils using egg shell as calcium source", Environ. Earth Sci., 81(13), 348. https://doi.org/10.1007/s12665-022-10475-w.
  39. Kulanthaivel, P., Soundara, B., Velmurugan, S. and Naveenraj, V. (2021), "Experimental investigation on stabilization of clay soil using nano-materials and white cement", Mater. Today: Proc., 45, 507-511. https://doi.org/10.1016/j.matpr.2020.02.107.
  40. Mahallei, H. and Badv, K. (2021), "The study of diffusion characteristics of soil bentonite to control contaminant transport", World J. Eng., 18(3), 379-388. https://doi.org/10.1108/WJE-01-2020-0003.
  41. Majeed, Z.H. and Taha, M.R. (2012), "Effect of nanomaterial treatment on geotechnical properties of a Penang soil", Asian Sci. Res., 2, 587-592.
  42. Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N.T. and Jahandari, S. (2021), "Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate", Constr. Build. Mater., 287, 122652. https://doi.org/10.1016/j.conbuildmat.2021.122652.
  43. Mollaei, M., Jahanian, H. and Azadi, M. (2023), "Laboratory study of the cyclic behavior of cement sand with nanoclay", Geotech. Geol. Eng., 41, 3375-3387. https://doi.org/10.1007/s10706-023-02463-z.
  44. Naz, A. and Chowdhury, A. (2021), "Pollutant extraction from water and soil using montmorillonite claypolymer composite: A rapid review", Mater. Today: Proc., 60(1), 1-7. https://doi.org/10.1016/j.matpr.2021.10.366.
  45. Nikbakht, M., Sarand, F.B., Esmatkhah Irani, A., Hajialilue Bonab, M., Azarafza, M. and Derakhshani, R. (2022a), "An experimental study for swelling effect on repairing of cracks in fine-grained clayey soils", Appl. Sci., 12(17), 8596. https://doi.org/10.3390/app12178596.
  46. Nikbakht, M., Sarand, F.B., Dabiri, R. and Bonab, M.H. (2022b), "Application of nanoclay and nanofiber filters to reduce soil permeability and leachates from landfill liners: A Review", Geotech. Geol., 18(1), 671-680. https://doi.org/10.30495/GEOTECH.2022.693134.
  47. Nikbakht, M., Sarand, F.B., Dabiri, R. and Hajialilue Bonab, M. (2023), "Investigation of the leachate effect on permeability and geotechnical characteristics of fine-grained soil modified using nanoclay-nanofiber composites", Water, 15(2), 294. https://doi.org/10.3390/w15020294.
  48. Nwachukwu, A.N. and Nwachukwu, N.V. (2020), "Water table: The dominant control on CH4 and CO2 emission from a closed landfill site", Adv. Environ. Res., 9(2), 123-133. https://doi.org/10.12989/aer.2020.9.2.123.
  49. Ozcoban, M.S., Acarer, S. and Tufekci, N. (2022), "Effect of solid waste landfill leachate contaminants on hydraulic conductivity of landfill liners", Water Sci. Technol., 85(5), 1581-1599. https://doi.org/10.2166/wst.2022.033.
  50. Part, F., Berge, N., Baran, P., Stringfellow, A., Sun, W., Bartelt-Hunt, S. and Huber-Humer, M. (2018), "A review of the fate of engineered nanomaterials in municipal solid waste streams", Waste Manag., 75, 427-449. https://doi.org/10.1016/j.wasman.2018.02.012.
  51. Praveen, V. and Sunil, B.M. (2016), "Potential use of waste rubber shreds in drainage layer of landfills-An experimental study", Adv. Environ. Res., 5(3), 201-211. http://doi.org/10.12989/aer.2016.5.3.201.
  52. Qasaimeh, A., Sharo, A.A. and Bani-Melhem, K. (2020), "Clayey soil amendment by hydrophilic nano bentonite for landfill cover barrier: A case study", J. Environ. Eng. Landsc. Manag., 28(3), 148-156. https://doi.org/10.3846/jeelm.2020.12715.
  53. Selvakumar, S., Kulanthaivel, P. and Soundara, B. (2023), "Experimental investigation of geosynthetic encased conventional aggregate and fly ash brick bats columns on soft clay", Int. J. Pavement Res. Technol., 16, 109-127. https://doi.org/10.1007/s42947-021-00118-x.
  54. Selvakumar, S., Kulanthaivel, P. and Soundara, B. (2021), "Influence of nano-silica and sodium silicate on the strength characteristics of clay soil", Nanotechnol. Environ. Eng., 6, 46. https://doi.org/10.1007/s41204-021-00142-z.
  55. Sivabalaselvamani, D., Kulanthaivel, P., Yogapriya, J. and Dhanoa, I.S. (2022), "Study on engineering strength properties of ceramic waste powder stabilized expansive soil using machine learning algorithms", J. Ceram. Proc. Res., 23(6), 902-911. https://doi.org/10.36410/jcpr.2022.23.6.902.
  56. Taghvaei, P., Mousavi, S.F., Shahnazari, A., Karami, H. and Shoshpash, I. (2021), "Laboratory comparison of nanoclay effect on clay and sandy soil hydraulic conductivity in three different density", Irrig. Sci. Eng., 44(4), 15-28. https://doi.org/10.22055/jise.2018.24885.1738.
  57. Wang, H., Jiang, L., Zhang, C., Wang, K., Li, Y., Pu, H. and Zhao, Q. (2022), "Ca-bentonite/polymer nanocomposite geosynthetic clay liners for effective containment of hazardous landfill leachate", J. Clean. Prod., 365, 132825. https://doi.org/10.1016/j.jclepro.2022.132825.
  58. Zoriyeh, H., Erdem, S., Gurbuz, E. and Bozbey, I. (2020), "Nano-clay modified high plasticity soil as a building material: Micro-structure linked engineering properties and 3D digital crack analysis", J. Build. Eng., 27, 101005. https://doi.org/10.1016/j.jobe.2019.101005.