Acknowledgement
The work in this paper was funded by National Natural Science Foundation of China (Grant No. 52378381) and National Key Research and Development Program (Grant No. 2017YFC1500702).
References
- Amadio, C., Fragiacomo, M. and Rajgelj, S. (2003), "The effects of repeated earthquake ground motions on the non-linear response of SDOF systems", Earthq. Eng. Struct. D., 32(2), 291-308. https://doi.org/10.1002/eqe.225.
- Castaldo, P., Palazzo, B. and Della Vecchia, P. (2015), "Seismic reliability of base-isolated structures with friction pendulum bearings", Eng. Struct., 95, 80-93. https://doi.org/10.1016/j.engstruct.2015.03.053.
- Chen, Z. and Jia, P. (2021), "Seismic response of underground stations with friction pendulum bearings under horizontal and vertical ground motions", Soil Dyn. Earthq. Eng., 151. https://doi.org/10.1016/j.soildyn.2021.106984.
- Chen, Z., Jia, P., Fan, Y. and Liu, Z. (2021), "Parameter analysis and optimization of friction pendulum bearings in underground stations based on genetic algorithm", J. Earthq. Eng., 26(15), 7814-7831. https://doi.org/10.1080/13632469.2021.1988765.
- Chou, J.C. and Lin, E.G.E. (2020), "Incorporating ground motion effects into Sasaki and Tamura prediction equations of liquefaction-induced uplift of underground structures", Geomech. Eng., 22(1), 25-33. https://doi.org/10.12989/gae.2020.22.1.025.
- Cui, Z.D., Huang, M.H., Hou, C.Y. and Yuan, L. (2023a), "Seismic deformation behaviors of the soft clay after freezing-thawing", Geomech. Eng., 34(3), 303-316. https://doi.org/10.12989/gae.2023.34.3.303.
- Cui, Z.D., Zhang, L.J. and Zhan, Z.X. (2023b), "Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading", Geomech. Eng., 32(4), 411-426. https://doi.org/10.12989/gae.2023.32.4.411.
- Hatzigeorgiou, G.D. and Beskos, D.E. (2009), "Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes", Eng. Struct., 31(11), 2744-2755. https://doi.org/10.1016/j.engstruct.2009.07.002.
- He, Z. and Chen, Q. (2021), "Upgrading the seismic performance of underground structures by introducing lead-filled steel tube dampers", Tunn. Undergr. Sp. Tech., 108. https://doi.org/10.1016/j.tust.2020.103727.
- Huynh, V.Q., Nguyen, T.K. and Nguyen, X.H. (2021), "Seismic analysis of soil-structure interaction: Experimentation and modeling", Geomech. Eng., 27(2), 115-121. https://doi.org/10.12989/gae.2021.27.2.115.
- Jing, Y., Haiyang, Z., Wei, W., Zhenghua, Z. and Guoxing, C. (2021), "Seismic performance and effective isolation of a large multilayered underground subway station", Soil Dyn. Earthq. Eng., 142. https://doi.org/10.1016/j.soildyn.2020.106560.
- Kim, B. and Shin, M. (2017), "A model for estimating horizontal aftershock ground motions for active crustal regions", Soil Dyn. Earthq. Eng., 92, 165-175. https://doi.org/10.1016/j.soildyn.2016.09.040.
- Kim, Y., Lim, H. and Jeong, S. (2020), "Seismic response of vertical shafts in multi-layered soil using dynamic and pseudo-static analyses", Geomech. Eng., 21(3), 269-277. https://doi.org/10.12989/gae.2020.21.3.269.
- Kirkwood, P. and Dashti, S. (2018a), "A centrifuge study of seismic structure-soil-structure interaction on liquefiable ground and implications for design in dense urban areas", Earthq. Spectra, 34(3), 1113-1134. https://doi.org/10.1193/052417eqs095m.
- Kirkwood, P. and Dashti, S. (2018b), "Considerations for the Mitigation of Earthquake-Induced Soil Liquefaction in Urban Environments", J. Geotech. Geoenviron. Eng., 144(10). https://doi.org/10.1061/(asce)gt.1943-5606.0001936.
- Kwon, S.Y., Yoo, M. and Hong, S. (2020), "Earthquake risk assessment of underground railway station by fragility analysis based on numerical simulation", Geomech. Eng., 21(2), 143-152. https://doi.org/10.12989/gae.2020.21.2.143.
- Lu, C.C. and Hwang, J.H. (2018), "Damage analysis of the new Sanyi railway tunnel in the 1999 Chi-Chi earthquake: Necessity of second lining reinforcement", Tunn. Undergr. Sp. Tech., 73, 48-59. https://doi.org/10.1016/j.tust.2017.12.009.
- Ma, C., Lu, D., Zhao, Y., Wang, Z. and Du, X. (2022), "Performance of an underground structure seismic mitigation system improved by frictional deformation absorbing braces", Structures, 37, 1-16. https://doi.org/10.1016/j.istruc.2021.12.082.
- Moustafa, A. and Takewaki, I. (2010), "Modeling critical ground-motion sequences for inelastic structures", Adv. Struct. Eng., 13(4), 665-679. https://doi.org/10.1260/1369-4332.13.4.665.
- Ruiz-Garcia, J. (2012), "Mainshock-aftershock ground motion features and their influence in building's seismic response", J. Earthq. Eng., 16(5), 719-737. https://doi.org/10.1080/13632469.2012.663154.
- Sudevan, P.B., Boominathan, A. and Banerjee, S. (2020), "Mitigation of liquefaction-induced uplift of underground structures by soil replacement methods", Geomech. Eng., 23(4), 365-379. https://doi.org/10.12989/gae.2020.23.4.365.
- Tsinidis, G. (2017). "Response characteristics of rectangular tunnels in soft soil subjected to transversal ground shaking", Tunn. Undergr. Sp. Tech., 62, 1-22. https://doi.org/10.1016/j.tust.2016.11.003.
- Wang, W.L., Wang, T.T., Su, J.J., Lin, C.H., Seng, C.R. and Huang, T.H. (2001). "Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake", Tunn. Undergr. Sp. Tech., 16(3), 133-150. https://doi.org/10.1016/s0886-7798(01)00047-5.
- Wang, Z., Gao, B., Jiang, Y. and Yuan, S. (2009), "Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake", Science in China Series ETech. Sci., 52(2), 546-558. https://doi.org/10.1007/s11431-009-0054-z.
- Xu, C., Zhang, Z., Li, Y. and Du, X. (2020a), "Validation of a numerical model based on dynamic centrifuge tests and studies on the earthquake damage mechanism of underground frame structures", Tunn. Undergr. Sp. Tech., 104. https://doi.org/10.1016/j.tust.2020.103538.
- Xu, Z., Du, X., Xu, C. and Han, R., (2020b), "Numerical analyses of seismic performance of underground and aboveground structures with friction pendulum bearings", Soil Dyn. Earthq. Eng., 130. https://doi.org/10.1016/j.soildyn.2019.105967.
- Xu, Z., Du, X., Xu, C., Hao, H., Bi, K. and Jiang, J. (2019), "Numerical research on seismic response characteristics of shallow buried rectangular underground structure", Soil Dyn. Earthq. Eng., 116, 242-252. https://doi.org/10.1016/j.soildyn.2018.10.030.
- Yin, Y.J. and Li, Y. (2011), "Loss estimation of light-frame wood construction subjected to mainshock-aftershock sequences", J. Perform. Constr. Fac., 25(6), 504-513. https://doi.org/10.1061/(asce)cf.1943-5509.0000187.
- Yoo, M., Kwon, S.Y. and Hong, S. (2022), "Dynamic response evaluation of deep underground structures based on numerical simulation", Geomech. Eng., 29(3), 269-279. https://doi.org/10.12989/gae.2022.29.3.269.
- Yu, X.H., Li, S., Lu, D.G. and Tao, J. (2020), "Collapse capacity of inelastic single-degree-of-freedom systems subjected to mainshock-aftershock earthquake sequences", J. Earthq. Eng., 24(5), 803-826. https://doi.org/10.1080/13632469.2018.1453417.
- Zhuang, H., Zhao, C., Chen, S., Fu, J., Zhao, K. and Chen, G. (2020), "Seismic performance of underground subway station with sliding between column and longitudinal beam", Tunn. Undergr. Sp. Tech., 102. https://doi.org/10.1016/j.tust.2020.103439.