DOI QR코드

DOI QR Code

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher (Department of Civil Engineering, University of Science and Culture) ;
  • Hamid Alielahi (Department of Civil Engineering, Zanjan Branch, Islamic Azad University)
  • Received : 2023.06.13
  • Accepted : 2024.01.08
  • Published : 2024.02.10

Abstract

Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.

Keywords

Acknowledgement

The authors would like to express their great thanks to Mr. Ali Derakhshan for his valuable assistance in editing the manuscript.

References

  1. AASHTO (1995), "AASHTO LRFD bridge design specifications", Washington, D.C.
  2. Abrahamson, N.A. (1992), "Non-stationary spectral matching", Seismol. Res. Lett., 63(1), 30.
  3. Alhabshi, A. (2006), "Finite element based design procedures for MSE/soil-nail hybrid retaining wall systems", Ph.D. Thesis. Texas, United States: Texas Tech University.
  4. Alielahi, H. and Rabeti Moghadam, M. (2017), "Fragility curves evaluation for broken-back block quay walls", J. Earthq. Eng., 21(1), 1-22. https://doi.org/10.1080/13632469.2016.1142487.
  5. Altay, G, Kayadelen, C., C anakci, H., Bagriacik, B., Ok, B. and Oguzhanoglu, M.A. (2021), "Experimental investigation of deformation behavior of geocell retaining walls", Geomech. Eng., 27(5), 419-431. https://doi.org/10.12989/gae.2021.27.5.419
  6. Argyroudis, S.A., Kaynia, A.M. and Pitilakis, K. (2013), "Development of fragility functions for geotechnical constructions: Application to cantilever retaining walls", Soil Dyn. Earthq. Eng., 50, 106-116. https://doi.org/10.1016/j.soildyn.2013.02.014.
  7. Bayat, M., Kosarieh, A.H. and Javanmard, M. (2021), "Probabilistic seismic demand analysis of soil nail wall structures using bayesian linear regression approach", Sustainability, 13(11), 5782. https://doi.org/10.3390/su13115782.
  8. Berg, R.R., Christopher, B.R. and Samtani, N.C. (2009), "Design and construction of mechanically stabilized earth walls and reinforced soil slopes", FHWA NHI-10-024 (Vol. I) and NHI-10-025 (Vol. II). Washington, DC: Federal Highway Administration, US Dept. of Transportation.
  9. Cosentini, R.M. and Bozzoni, F. (2022), "Fragility curves for rapid assessment of earthquake-induced damage to earth-retaining walls starting from optimal seismic intensity measures", Soil Dyn. Earthq. Eng., 152, 107017. https://doi.org/10.1016/j.soildyn.2021.107017.
  10. Deghoul, L., Gabi, S. and Hamrouni, A. (2020), "The influence of the soil constitutive models on the seismic analysis of pile-supported wharf structures with batter piles in cut-slope rock dike", Studia Geotechnica et Mechanica, 42(3), 191-209. https://doi.org/10.2478/sgem-2019-0050.
  11. El-Emam, M. and Bathurst, R.J. (2006), "Influence of reinforcement parameters on the seismic response of reduced-scale reinforced soil retaining walls", Geotext. Geomembranes, 25(1), 33-49. https://doi.org/10.1016/j.geotexmem.2006.09.001.
  12. Erberik, M.A. (2008), "Fragility-based assessment of typical mid-rise and low-rise RC buildings in Turkey", Eng. Struct., 30(5), 1360-1374. https://doi.org/10.1016/j.engstruct.2007.07.016.
  13. Eurocode 8: Design of structures for earthquake resistance. (2004), London: British Standards Institution.
  14. Hamrouni, A., Dias, D. and Sbartai, B. (2018), "Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm", Geomech. Eng., 15(4), 937-945. https://doi.org/10.12989/gae.2018.15.4.937.
  15. Hamrouni, A., Sbartai B. and Dias, D. (2021), "Ultimate dynamic bearing capacity of shallow strip foundations - Reliability analysis using the response surface methodology", Soil Dyn. Earthq. Eng.. 144. https://doi.org/10.1016/j.soildyn.2021.106690.
  16. Hancock, J.J., Watson-Lamprey, N.A., Abrahamson, J.J., Bommer, A., Markatis, E., Maccoy, E.M. and Mendis, R. (2006), "An improved method of matching response spectra of recorded earthquake ground motion using wavelets", J. Earthq. Eng., 10(1), 67-89. https://doi.org/10.1080/13632460609350629.
  17. Huang, Y., Hu, H. and Xiong, M. (2018), "Performance-based seismic fragility analysis of retaining walls based on the probability density evolution method", Struct. Infrastruct. Eng., 15(1). https://doi.org/10.1080/15732479.2018.1520906.
  18. Jafarian, Y. and Miraei, M. (2019), "Scalar-and vector-valued fragility analyses of gravity quay wall on liquefiable soil: Example of Kobe port", Int. J. Geo. Mech., 19, 04019029. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001382.
  19. Jiang, Y., Han, J., Parsons, R.L. and Brennan, J.J. (2016), "Field instrumentation and evaluation of modular-block MSE walls with secondary geogrid layers", J. Geotech. Geoenviron. Eng., 142(12), 05016002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001573.
  20. Kamalzadeh, A. and Pender, M.J. (2022), "Dynamic response of Mechanically Stabilised Earth (MSE) structures: A numerical study", Geotext. Geomembranes, 51(2), 73-87. https://doi.org/10.1016/j.geotexmem.2022.09.008.
  21. Kuhlemeyer, R.L. and Lysmer, J. (1973), "Finite element method accuracy for wave propagation problems", J. Soil Mech. Found. Division, 99(5), 421-427. https://doi.org/10.1061/JSFEAQ.0001885.
  22. Kuwano, J., Miyata, Y. and Koseki, J. (2014), "Performance of reinforced soil walls during the 2011 Tohoku earthquake", Geosynthetics Int., 21(3), 179-196. https://doi.org/10.1680/gein.14.00008.
  23. Lee, Y.B., Ko, H.Y. and McCartney, J.S. (2010), "Deformation response of shored MSE walls under surcharge loading in the centrifuge", Geosynthetics Internationa, 17(6), 389-402. https://doi.org/10.1680/gein.2010.17.6.389.
  24. Ling, H., Leshchinsky, D. and Chou, N.N.S. (2001), "Post-Earthquake Investingation walls and slopes during the Ji-Ji Earthquake of Taiwan", Soil Dyn. Earthq. Eng., 21(4), 297-313. https://doi.org/10.1016/S0267-7261(01)00011-2.
  25. Morrison, K.F., Harrison, F.E., Collin, J.G., Dodds, A. and Arndt, B. (2006), "Shored Mechanically Stabilized Earth (SMSE) wall systems design guidelines", FHWA-CFL/TD-06-001. Washington, DC: Federal Highway Administration, US Dept. of Transportation.
  26. PEER (Pacific Earthquake Engineering Research) (2010), "PEER ground motion database", University of Berkeley, California. https://peer.berkeley.edu/peer-strong-ground-motion-databases.
  27. Payeur, J., Corfdir, A. and Bourgeois, E. (2015), "Dynamic behavior of a mechanically stabilized earth wall under harmonic loading: Experimental characterization and 3D finite elements model", Comput. Geotech.. 65, 199-211. https://doi.org/10.1016/j.compgeo.2014.12.001.
  28. PLAXIS 2D Reference Manual (2020), https://communities.bentley.com/manuals.
  29. Raslan Alainia (2019), Developing Fragility Curves for Earth-Retaining walls due to Dynamic loads, Master Thesis, Politecnico Di Torino.
  30. Ren, F.F. and Qi, M.X. (2017), "Model tests on the shored mechanically stabilized earth wall", Proceedings of the 6th National Symposium on Geosynthetics and Reinforced Earth, Shanghai, China.
  31. Ren, F.F., Xu, H., Ji, Y.J., Huang, Q.Q. and Tian, X. (2022). "Experimental study on the mechanical behavior of shored mechanically stabilized earth walls for widening existing reinforced embankments", Geotext. Geomembranes, 50(3), 737-750. https://doi.org/10.1016/j.geotexmem.2022.03.013.
  32. Ren, F.F., Hao, Q. and Wang, G. (2019), "Numerical comparison on deformation characteristics of the shored mechanically stabilized earth wall between reduced-scale and full-scale models", Soil Mech. Found. Eng., 56(5), 302-308. https://doi.org/10.1007/s11204-019-09606-6.
  33. Safaee, A.M., Mahboubi, A. and Noorzad, A. (2021), "Experimental investigation on the performance of multi-tiered geogrid mechanically stabilized earth (MSE) walls with wrap-around facing subjected to earthquake loading", Geotext. Geomembranes, 49(1), 130-145. https://doi.org/10.1016/j.geotexmem.2020.08.008.
  34. Samtani, N.C. and Alexander, D.E. (2005), "Remediation of a failing MSE wall by Jet grouting", Geo-Frontiers Congress, https://doi.org/10.1061/40783(162)24.
  35. Sandri, D. (1994), "Retaining wall stand up to the Northridge earthquake", Geotechnical Fabric Reports, 12(4), 30-31.
  36. Seo, H., Lee, Y.J., Park, D. and Kim, B. (2022), "Seismic fragility assessment for cantilever retaining walls with various backfill slopes in South Korea", Soil Dynam. Earthq. Eng., 161, 107443. https://doi.org/10.1016/j.soildyn.2022.107443.
  37. Suppasri, A., Koshimura, S. and Imamura, F. (2011), "Developing tsunami fragility curves based on the satellite remote sensing and the numerical modeling of the 2004 Indian Ocean tsunami in Thailand", Natural Hazards and Earth System Sciences. 11(1), 173-189. https://doi.org/10.5194/nhess-11-173-2011, 2011.
  38. Tatsuko, F., Koseki, J., Tateyama, M. and Horii, K. (1995), "Performance of geogrid reinforced soil retaining walls during the grate Hanshin-Avaji earthquake", International conference on earthquake geotechnical engineering, 2, 55-62.
  39. Turkel, B., Yildirim, I.Z. and Guler, E. (2020), "The effect of natural frequency on the seismic behavior of an 8 m high MSE wall", Geo-Congress. GSP 316. https://doi.org/10.1061/9780784482797.040.
  40. Xie, Y. and Leshchinsky, B. (2015), "MSE walls as bridge abutments: Optimal reinforcement density", Geotext. Geomembranes, 43(2), 128-138. https://doi.org/10.1016/j.geotexmem.2015.01.002.
  41. Xu, P., Hatami, K. and Jiang, G. (2020), "Study on seismic stability and performance of reinforced soil walls using shaking table tests", Geotext. Geomembranes, 48(1), 82-97. https://doi.org/10.1016/j.geotexmem.2019.103507.
  42. Xu, P., Hatami, K. and Jiang, G. (2021a), "Shaking table performance of reinforced soil retaining walls with different facing configurations", Geotext. Geomembranes, 49(3), 516-527. https://doi.org/10.1016/j.geotexmem.2020.10.003.
  43. Xu, P., Hatami, K. and Jiang, G. (2021b), "Shaking table study on the influence of ground motion frequency on the performance of MSE walls", Soil Dyn. Earthq. Eng., 142(4), 106585. https://doi.org/10.1016/j.soildyn.2021.106585.
  44. Xu, P., Y. Zhong, K. Hatami, G. Yang, W. Liu, G. Jiang. (2023). "Influence of reinforcement design on seismic stability of full-height panel MSE walls", Soil Dyn. Earthq. Eng., 165. https://doi.org/10.1016/j.soildyn.2022.107674.
  45. Yang, K.H., Zornberg, J.G., Hung, W.Y. and Lawson, C.R. (2011), "Location of failure plane and design considerations for narrow geosynthetic reinforced soil wall systems", J. Geo. Eng., 6(1), 27-40. https://doi.org/10.6310/jog.2011.6(1).3.
  46. Yazdandoust, M. (2017), "Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test", Soil Dyn. Earthq. Eng., 97, 216-232. https://doi.org/10.1016/j.soildyn.2017.03.011.
  47. Yazdandoust, M. (2019), "Shaking table modeling of MSE/soil nail hybrid retaining walls", Soils Found., 59(2), 241-252. https://doi.org/10.1016/j.sandf.2018.05.013.
  48. Yuu, J., Han, J., Rosen, A., Parsons, R.L. and Leshchinsky, D. (2008), "Technical review of geocell-reinforced base courses over weak subgrade", The First Pan American Geosynthetics Conference & Exhibition proceedings (GeoAmericas), Appendix VII, Cancun, Mexico. 1022-1030.
  49. Zamiran, S. and Osouli, A. (2018), "Seismic motion response and fragility analyses of cantilever retaining walls with cohesive backfill", Soils Found., 58(2), 412-426. https://doi.org/10.1016/j.sandf.2018.02.010.
  50. Zhang, X.W. (2017), "Scale model test of the behavior of the shored mechanically stabilized earth (SMSE) wall", Ba. Thesis. Shanghai, China: Tongji University.
  51. Zheng, Y., Li, F., Guo, W.,Wang, P. and Yang, G. (2023), "Influence of facing conditions on the dynamic response of back-to-back MSE walls", Soil Dyn. Earthq. Eng., 164. https://doi.org/10.1016/j.soildyn.2022.107650.