DOI QR코드

DOI QR Code

Damage rate assessment of cantilever RC walls with backfill soil using coupled Lagrangian-Eulerian simulation

  • Javad Tahamtan (Department of civil engineering, sanjesh parsian advanced skills Institute) ;
  • Majid Gholhaki (Department of Civil Engineering, Semnan University) ;
  • Iman Najjarbashi (Department of civil engineering, sanjesh parsian advanced skills Institute) ;
  • Abdullah Hossaini (Department of civil engineering, sanjesh parsian advanced skills Institute) ;
  • Hamid Pirmoghan (Department of Civil Engineering, Semnan University)
  • 투고 : 2022.02.26
  • 심사 : 2024.01.02
  • 발행 : 2024.02.10

초록

In recent decades, the protection and vulnerability of civil structures under explosion loads became a critical issue in terms of security, which may cause loss of lives and structural damage. Concrete retaining walls also restrict soils and slopes from displacements; meanwhile, intensive temporary loading may cause massive damage. In the current study, the modified Johnson-Holmquist (also known as J-H2) material model is implemented for concrete materials to model damages into the ABAQUS through user-subroutines to predict the blasting-induced concrete damages and volume strains. For this purpose, a 3D finite-element model of the concrete retaining wall was conducted in coupled Eulerian-Lagrangian simulation. Subsequently, a blast load equal to 500 kg of TNT was considered in three different positions due to UFC 3-340-02. Influences of the critical parameters in smooth blastings, such as distance from a free face, position, and effective blasting time, on concrete damage rate and destroy patterns, are explored. According to the simulation results, the concrete penetration pattern at the same distance is significantly influenced by the density of the progress environment. The result reveals that the progress of waves and the intensity of damages in free-air blasting is entirely different from those that progress in a dense surrounding atmosphere such as soil. Half-damaged elements in air blasts are more than those of embedded explosions, but dense environments such as soil impose much more pressure in a limited zone and cause more destruction in retaining walls.

키워드

참고문헌

  1. Abedini, M., Mutalib, A.A., Mehrmashhadi, J., Raman, S.N., Alipour, R., Momeni, T. and Mussa, M.H. (2019), Large deflection behavior effect in reinforced concrete columns exposed to extreme dynamic loads, https://doi.org/10.1007/s11709-020-0604-9.
  2. Acosta, P.F. (2011), "Overview of UFC 3-340-02 structures to resist the effects of accidental explosions", Proceedings of the Structures Congress 2011, 1454-1469. https://doi.org/10.1061/41171(401)127.
  3. Agency, D. of H.S.F.E.M. (2003), Reference Manual To Mitigate Potential Terrorist Attacks Against Buildings. Government Printing Office. https://www.dhs.gov/xlibrary/assets/st/st-bips-06.pdf.
  4. Akram, M.R. and Yesilyurt, A. (2023), "Experimental analysis of blast loading effects on security check-post", Struct. Eng. Mech., 87(3), 273-282. https://doi.org/10.12989/sem.2023.87.3.273.
  5. Ambrosini, D. and Luccioni, B. (2020), "Effects of underground explosions on soil and structures", Underground Space (China), 5(4), 324-338. https://doi.org/10.1016/j.undsp.2019.09.002.
  6. Baker, W.E., Westine, P.S. and Dodge, F.T. (1973), Similarity Methods in Engineering Dynamics, Rochelle. NJ: Spartan Books, Hayden Book Company, Inc. https://www.elsevier.com/books/similarity-methods-inengineering-dynamics/westine/978-0-444-88156-4
  7. Brode, H.L. (1955), "Numerical solutions of spherical blast waves", J. Appl. Phys., 26(6), 766-775. https://doi.org/10.1063/1.1722085.
  8. Bulson, P.S. (1997), Explosive loading of engineering structures, CRC Press. https://doi.org/10.4324/9780203473863.
  9. Cheeseman, B.A., Wolf, S., Yen, C.F. andSkaggs, R. (2006), "Blast simulation of explosives buried in saturated sand", Fragblast, 10(1-2), 1-8. https://doi.org/10.1080/13855140500432045.
  10. Choi, S., Wang, J., Munfakh, G. and Dwyre, E. (2006), "3D nonlinear blast model analysis for underground structures", Proceedings of the GeoCongress 2006: Geotechnical Engineering in the Information Technology Age 1-6. https://doi.org/10.1061/40803(187)206.
  11. Dadkhah, H. and Mohebbi, M. (2021), "A multi - hazard - based design approach for LRB isolation system against explosion and earthquake", Earthq. Struct., 21(1), 95-111. https://doi.org/10.12989/eas.2021.21.1.095.
  12. De, A. (2012), "Computers and Geotechnics Numerical simulation of surface explosions over dry, cohesionless soil", Comput. Geotech., 43, 72-79. https://doi.org/10.1016/j.compgeo.2012.02.007.
  13. Defense, U.S.D. of. (2008), Structures to resist the effects of accidental explosions. UFC 3-340-02. https://www.wbdg.org/ffc/dod/unified-facilities-criteria-ufc/ufc-3-340-02.
  14. Hao, H., Hao, Y., Li, J. and Chen, W. (2016a), "Review of the current practices in blast-resistant analysis and design of concrete structures", Adv. Struct. Eng., 19(8), 1193-1223. https://doi.org/10.1177/1369433216656430.
  15. Hao, H., Hao, Y., Li, J. and Chen, W. (2016b), "Review of the current practices in blast-resistant analysis and design of concrete structures", Adv. Struct. Eng., 19(8), 1193-1223. https://doi.org/10.1177/1369433216656430.
  16. Hejazi, Y., Dias, D. and Kastner, R. (2008), "Impact of constitutive models on the numerical analysis of underground constructions", Acta Geotechnica, 3(4), 251-258. https://doi.org/10.1007/s11440-008-0056-1.
  17. Henrych, J. and Major, R. (1979), The dynamics of explosion and its use, 569. https://doi.org/10.1063/1.46199.
  18. Jeon, S., Kim, T.H. and You, K.H. (2015), "Characteristics of crater formation due to explosives blasting in rock mass", Geomech. Eng., 9(3), 329-344. https://doi.org/10.12989/gae.2015.9.3.329.
  19. Jin, Z., Ning, J. and Xu, X. (2023), "A novel coupled Euler-Lagrange method for high resolution shock and discontinuities capturing", Int. J. Numer. Method. Fluid., https://doi.org/10.1002/fld.5255.
  20. Johnson, G.R. and Holmquist, T.J. (1992), "A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures", Shock Wave and High-Strain-Rate Phenomena in Materials, 1075-1081. https://doi.org/10.1063/1.46199.
  21. Khodaparast, M., Hosseini, S.H. and Moghtadaei, H. (2023), "Determination of blast impact range and safe distance for a reinforced concrete pile under blast loading", Int. J. Eng., 36(2), 384-397. https://doi.org/10.5829/IJE.2023.36.02B.17.
  22. Kim, D. and Park, K. (2019), "Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber", Geomech. Eng., 19(4), 361-368. https://doi.org/10.12989/gae.2019.19.4.361.
  23. Kinney, G.F. and Graham, K.J. (2013), Explosive shocks in air. Springer Science & Business Media. https://doi.org/10.1121/1.394030
  24. Koneshwaran, S., Thambiratnam, D.P. and Gallage, C. (2015), "Blast response of segmented bored tunnel using coupled SPH-FE method", Structures, 2, 58-71. https://doi.org/DOI:10.2749/101686615X14355644771054
  25. Kucewicz, M., Baranowski, P. and Malachowski, J. (2020), "Determination and validation of Karagozian-Case Concrete constitutive model parameters for numerical modeling of dolomite rock", Int. J. Rock Mech. Min. Sci., 129, 104302. https://doi.org/10.1016/j.ijrmms.2020.104302.
  26. Kucewicz, M., Baranowski, P. and Malachowski, J. (2021), "Dolomite fracture modeling using the Johnson-Holmquist concrete material model: Parameter determination and validation", J. Rock Mech. Geotech. Eng., 13(2), 335-350. https://doi.org/10.1016/j.jrmge.2020.09.007.
  27. Li, X.L. (2020), Parametric Study on Numerical Simulation of Missile Punching Test Using Concrete Damaged Plasticity (CDP) Model, 1-2. https://doi.org/10.1016/j.ijimpeng.2020.103652.
  28. Lin, X., Zhang, Y.X. and Hazell, P.J. (2014), "Modelling the response of reinforced concrete panels under blast loading", Mater. Design, 56, 620-628. https://doi.org/10.1016/j.matdes.2013.11.069.
  29. Liu, F., Silva, J., Yang, S., Lv, H. and Zhang, J. (2019), "Influence of explosives distribution on coal fragmentation in top-coal caving mining", Geomech. Eng., 18(2), 111-119. https://doi.org/10.12989/gae.2019.18.2.111.
  30. Luccioni, B., Ambrosini, D., Nurick, G. and Snyman, I. (2009), "Craters produced by underground explosions", Comput. Struct., 87(21-22), 1366-1373. https://doi.org/10.1016/j.compstruc.2009.06.002.
  31. Ma, G.W.A. and An, X.M. (2008), "Numerical simulation of blasting-induced rock fractures", 45, 966-975. https://doi.org/10.1016/j.ijrmms.2007.12.002.
  32. Mahmoud, S. (2019), "Blast-load-induced interaction between adjacent multi-story buildings", Earthq. Struct., 17(1), 17-29. https://doi.org/10.12989/eas.2019.17.1.017.
  33. Manual, A.U. (2020), Abaqus user manual, Abacus. http://130.149.89.49:2080/v6.11/pdf_books/CAE.pdf.
  34. Murthy, A., Palani, G.S. and Iyer, N.R. (2010), "Impact analysis of concrete structural components", Defence Sci. J., 60(3). https://doi.org/10.14429/dsj.60.358.
  35. Osinov, V.A., Chrisopoulos, S. and Triantafyllidis, T. (2019), "Numerical analysis of the tunnel-soil interaction caused by an explosion in the tunnel", Soil Dyn. Earthq. Eng., 122, 318-326. https://doi.org/10.1016/j.soildyn.2018.09.010.
  36. Oucif, C. and Muhammad, L. (2018), "Science direct numerical modeling of high velocity impact applied to reinforced concrete panel", Undergr. Space, https://doi.org/10.1016/j.undsp.2018.04.007.
  37. Park, G.K., Kwak, H.G. and Filippou, F.C. (2021), "Hysteretic moment-curvature relations for the analysis of RC flexural members subjected to blast loading", Comput. Concrete, 27(6), 537-548. https://doi.org/10.12989/cac.2021.27.6.537.
  38. Rahgooy, K., Bahmanpour, A., Derakhshandi, M. and Bagherzadeh, A. (2022), "Distribution of elastoplastic modulus of subgrade reaction for analysis of raft foundations", 28(1), 89-105. https://doi.org/10.12989/gae.2022.28.1.089
  39. Rashiddel, A., Kharghani, M., Dias, D. and Hajihassani, M. (2020), "Computers and Geotechnics Numerical study of the segmental tunnel lining behavior under a surface explosion -Impact of the longitudinal joints shape", Comput. Geotech., 128, 103822. https://doi.org/10.1016/j.compgeo.2020.103822.
  40. Sagong, M., Choi, I.Y., Lee, J.S. and Cho, C. (2020), "Shear strength behaviors of grouts under the blasting induced vibrations", Geomech. Eng., 21(2), 207-213. https://doi.org/10.12989/gae.2020.21.3.289.
  41. Schwer, L.E. and Day, J. (1991), "Computational techniques for penetration of concrete and steel targets by oblique impact of deformable projectiles", Nuclear Eng. Design, 125(2), 215-238. https://doi.org/10.1016/0029-5493(91)90079-w.
  42. Shadabfar, M., Huang, H., Wang, Y. and Wu, C. (2020), "Monte carlo analysis of the induced cracked zone by single-hole rock explosion", Geomech. Eng., 21(3), 289-300. https://doi.org/10.12989/gae.2020.21.3.289.
  43. Station, U.S.A.E.W.E. (1986), TM5-855-1 Fundamentals of protective design for conventional weapons, US Army, Navy and Air Force, US Government Printing Office, Washington DC. https://catalogue.nla.gov.au/Record/4066161.
  44. Sun, Q. and Liu, C. (2022), "Near-explosion protection method of pi-section reinforced concrete beam", Geomech. Eng., 28(3), 209-224. https://doi.org/10.12989/gae.2022.28.3.209.
  45. Swinton, R.J. and Bergeron, D.M. (2004), Evaluation of a silent killer, the PMN anti-personnel blast mine, https://www.semanticscholar.org/paper/Evaluation-of-a-Silent-Killer%2C-the-PMN-Blast-Mine-Swinton-Bergeron/1ec5f180a8fbda7628cc5d110dddd57b254315bb
  46. Tai, Y.S. and Tang, C.C. (2006), "Numerical simulation: The dynamic behavior of reinforced concrete plates under normal impact", Theor. Appl. Fract. Mech., 45(2), 117-127. https://doi.org/10.1016/j.tafmec.2006.02.007.
  47. Tash, F.Y. and Neya, B.N. (2020), "An analytical solution for bending of transversely isotropic thick rectangular plates with variable thickness", Appl. Math. Model., 77, 1582-1602. https://doi.org/10.1243/03093247JSA666.
  48. Tugrul, A. and Sevim, B. (2017), "Numerically and empirically determination of blasting response of a RC retaining wall under TNT explosive", Adv. Concrete Constr., 5(5), 493-512. https://doi.org/10.12989/acc.2017.5.5.493.
  49. Uyar, G.G. and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545.
  50. Wang, J., Liu, F. and Zhang, J. (2019), "Investigation on the propagation mechanism of explosion stress wave in underground mining", Geomech. Eng., 17(3), 295-305. https://doi.org/10.12989/gae.2019.17.3.295.
  51. Wu, C. and Hao, H. (2005), "Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions", Int. J. Impact Eng., 31(6), 699-717. https://doi.org/10.1016/j.ijimpeng.2004.03.002.
  52. Yang, G., Wang, G., Lu, W., Wu, L., Yan, P. and Chen, M. (2019), "Experimental and numerical study of damage characteristics of RC slabs subjected to air and underwater contact explosions", Mar. Struct., 66, 242-257. https://doi.org/10.1016/j.marstruc.2019.04.009.
  53. Zhao, C.F., Chen, J.Y., Wang, Y. and Lu, S.J. (2012), Damage mechanism and response of reinforced concrete containment structure under internal blast loading, 61, 12-20. https://doi.org/10.1016/j.tafmec.2012.08.002.
  54. Zhao, X., Wang, G., Lu, W., Yan, P., Chen, M. and Zhou, C. (2018). "Damage features of RC slabs subjected to air and underwater contact explosions", Ocean Eng., 147, 531-545. https://doi.org/10.1016/j.oceaneng.2017.11.007.