References
- Abedini, M., Mutalib, A.A., Mehrmashhadi, J., Raman, S.N., Alipour, R., Momeni, T. and Mussa, M.H. (2019), Large deflection behavior effect in reinforced concrete columns exposed to extreme dynamic loads, https://doi.org/10.1007/s11709-020-0604-9.
- Acosta, P.F. (2011), "Overview of UFC 3-340-02 structures to resist the effects of accidental explosions", Proceedings of the Structures Congress 2011, 1454-1469. https://doi.org/10.1061/41171(401)127.
- Agency, D. of H.S.F.E.M. (2003), Reference Manual To Mitigate Potential Terrorist Attacks Against Buildings. Government Printing Office. https://www.dhs.gov/xlibrary/assets/st/st-bips-06.pdf.
- Akram, M.R. and Yesilyurt, A. (2023), "Experimental analysis of blast loading effects on security check-post", Struct. Eng. Mech., 87(3), 273-282. https://doi.org/10.12989/sem.2023.87.3.273.
- Ambrosini, D. and Luccioni, B. (2020), "Effects of underground explosions on soil and structures", Underground Space (China), 5(4), 324-338. https://doi.org/10.1016/j.undsp.2019.09.002.
- Baker, W.E., Westine, P.S. and Dodge, F.T. (1973), Similarity Methods in Engineering Dynamics, Rochelle. NJ: Spartan Books, Hayden Book Company, Inc. https://www.elsevier.com/books/similarity-methods-inengineering-dynamics/westine/978-0-444-88156-4
- Brode, H.L. (1955), "Numerical solutions of spherical blast waves", J. Appl. Phys., 26(6), 766-775. https://doi.org/10.1063/1.1722085.
- Bulson, P.S. (1997), Explosive loading of engineering structures, CRC Press. https://doi.org/10.4324/9780203473863.
- Cheeseman, B.A., Wolf, S., Yen, C.F. andSkaggs, R. (2006), "Blast simulation of explosives buried in saturated sand", Fragblast, 10(1-2), 1-8. https://doi.org/10.1080/13855140500432045.
- Choi, S., Wang, J., Munfakh, G. and Dwyre, E. (2006), "3D nonlinear blast model analysis for underground structures", Proceedings of the GeoCongress 2006: Geotechnical Engineering in the Information Technology Age 1-6. https://doi.org/10.1061/40803(187)206.
- Dadkhah, H. and Mohebbi, M. (2021), "A multi - hazard - based design approach for LRB isolation system against explosion and earthquake", Earthq. Struct., 21(1), 95-111. https://doi.org/10.12989/eas.2021.21.1.095.
- De, A. (2012), "Computers and Geotechnics Numerical simulation of surface explosions over dry, cohesionless soil", Comput. Geotech., 43, 72-79. https://doi.org/10.1016/j.compgeo.2012.02.007.
- Defense, U.S.D. of. (2008), Structures to resist the effects of accidental explosions. UFC 3-340-02. https://www.wbdg.org/ffc/dod/unified-facilities-criteria-ufc/ufc-3-340-02.
- Hao, H., Hao, Y., Li, J. and Chen, W. (2016a), "Review of the current practices in blast-resistant analysis and design of concrete structures", Adv. Struct. Eng., 19(8), 1193-1223. https://doi.org/10.1177/1369433216656430.
- Hao, H., Hao, Y., Li, J. and Chen, W. (2016b), "Review of the current practices in blast-resistant analysis and design of concrete structures", Adv. Struct. Eng., 19(8), 1193-1223. https://doi.org/10.1177/1369433216656430.
- Hejazi, Y., Dias, D. and Kastner, R. (2008), "Impact of constitutive models on the numerical analysis of underground constructions", Acta Geotechnica, 3(4), 251-258. https://doi.org/10.1007/s11440-008-0056-1.
- Henrych, J. and Major, R. (1979), The dynamics of explosion and its use, 569. https://doi.org/10.1063/1.46199.
- Jeon, S., Kim, T.H. and You, K.H. (2015), "Characteristics of crater formation due to explosives blasting in rock mass", Geomech. Eng., 9(3), 329-344. https://doi.org/10.12989/gae.2015.9.3.329.
- Jin, Z., Ning, J. and Xu, X. (2023), "A novel coupled Euler-Lagrange method for high resolution shock and discontinuities capturing", Int. J. Numer. Method. Fluid., https://doi.org/10.1002/fld.5255.
- Johnson, G.R. and Holmquist, T.J. (1992), "A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures", Shock Wave and High-Strain-Rate Phenomena in Materials, 1075-1081. https://doi.org/10.1063/1.46199.
- Khodaparast, M., Hosseini, S.H. and Moghtadaei, H. (2023), "Determination of blast impact range and safe distance for a reinforced concrete pile under blast loading", Int. J. Eng., 36(2), 384-397. https://doi.org/10.5829/IJE.2023.36.02B.17.
- Kim, D. and Park, K. (2019), "Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber", Geomech. Eng., 19(4), 361-368. https://doi.org/10.12989/gae.2019.19.4.361.
- Kinney, G.F. and Graham, K.J. (2013), Explosive shocks in air. Springer Science & Business Media. https://doi.org/10.1121/1.394030
- Koneshwaran, S., Thambiratnam, D.P. and Gallage, C. (2015), "Blast response of segmented bored tunnel using coupled SPH-FE method", Structures, 2, 58-71. https://doi.org/DOI:10.2749/101686615X14355644771054
- Kucewicz, M., Baranowski, P. and Malachowski, J. (2020), "Determination and validation of Karagozian-Case Concrete constitutive model parameters for numerical modeling of dolomite rock", Int. J. Rock Mech. Min. Sci., 129, 104302. https://doi.org/10.1016/j.ijrmms.2020.104302.
- Kucewicz, M., Baranowski, P. and Malachowski, J. (2021), "Dolomite fracture modeling using the Johnson-Holmquist concrete material model: Parameter determination and validation", J. Rock Mech. Geotech. Eng., 13(2), 335-350. https://doi.org/10.1016/j.jrmge.2020.09.007.
- Li, X.L. (2020), Parametric Study on Numerical Simulation of Missile Punching Test Using Concrete Damaged Plasticity (CDP) Model, 1-2. https://doi.org/10.1016/j.ijimpeng.2020.103652.
- Lin, X., Zhang, Y.X. and Hazell, P.J. (2014), "Modelling the response of reinforced concrete panels under blast loading", Mater. Design, 56, 620-628. https://doi.org/10.1016/j.matdes.2013.11.069.
- Liu, F., Silva, J., Yang, S., Lv, H. and Zhang, J. (2019), "Influence of explosives distribution on coal fragmentation in top-coal caving mining", Geomech. Eng., 18(2), 111-119. https://doi.org/10.12989/gae.2019.18.2.111.
- Luccioni, B., Ambrosini, D., Nurick, G. and Snyman, I. (2009), "Craters produced by underground explosions", Comput. Struct., 87(21-22), 1366-1373. https://doi.org/10.1016/j.compstruc.2009.06.002.
- Ma, G.W.A. and An, X.M. (2008), "Numerical simulation of blasting-induced rock fractures", 45, 966-975. https://doi.org/10.1016/j.ijrmms.2007.12.002.
- Mahmoud, S. (2019), "Blast-load-induced interaction between adjacent multi-story buildings", Earthq. Struct., 17(1), 17-29. https://doi.org/10.12989/eas.2019.17.1.017.
- Manual, A.U. (2020), Abaqus user manual, Abacus. http://130.149.89.49:2080/v6.11/pdf_books/CAE.pdf.
- Murthy, A., Palani, G.S. and Iyer, N.R. (2010), "Impact analysis of concrete structural components", Defence Sci. J., 60(3). https://doi.org/10.14429/dsj.60.358.
- Osinov, V.A., Chrisopoulos, S. and Triantafyllidis, T. (2019), "Numerical analysis of the tunnel-soil interaction caused by an explosion in the tunnel", Soil Dyn. Earthq. Eng., 122, 318-326. https://doi.org/10.1016/j.soildyn.2018.09.010.
- Oucif, C. and Muhammad, L. (2018), "Science direct numerical modeling of high velocity impact applied to reinforced concrete panel", Undergr. Space, https://doi.org/10.1016/j.undsp.2018.04.007.
- Park, G.K., Kwak, H.G. and Filippou, F.C. (2021), "Hysteretic moment-curvature relations for the analysis of RC flexural members subjected to blast loading", Comput. Concrete, 27(6), 537-548. https://doi.org/10.12989/cac.2021.27.6.537.
- Rahgooy, K., Bahmanpour, A., Derakhshandi, M. and Bagherzadeh, A. (2022), "Distribution of elastoplastic modulus of subgrade reaction for analysis of raft foundations", 28(1), 89-105. https://doi.org/10.12989/gae.2022.28.1.089
- Rashiddel, A., Kharghani, M., Dias, D. and Hajihassani, M. (2020), "Computers and Geotechnics Numerical study of the segmental tunnel lining behavior under a surface explosion -Impact of the longitudinal joints shape", Comput. Geotech., 128, 103822. https://doi.org/10.1016/j.compgeo.2020.103822.
- Sagong, M., Choi, I.Y., Lee, J.S. and Cho, C. (2020), "Shear strength behaviors of grouts under the blasting induced vibrations", Geomech. Eng., 21(2), 207-213. https://doi.org/10.12989/gae.2020.21.3.289.
- Schwer, L.E. and Day, J. (1991), "Computational techniques for penetration of concrete and steel targets by oblique impact of deformable projectiles", Nuclear Eng. Design, 125(2), 215-238. https://doi.org/10.1016/0029-5493(91)90079-w.
- Shadabfar, M., Huang, H., Wang, Y. and Wu, C. (2020), "Monte carlo analysis of the induced cracked zone by single-hole rock explosion", Geomech. Eng., 21(3), 289-300. https://doi.org/10.12989/gae.2020.21.3.289.
- Station, U.S.A.E.W.E. (1986), TM5-855-1 Fundamentals of protective design for conventional weapons, US Army, Navy and Air Force, US Government Printing Office, Washington DC. https://catalogue.nla.gov.au/Record/4066161.
- Sun, Q. and Liu, C. (2022), "Near-explosion protection method of pi-section reinforced concrete beam", Geomech. Eng., 28(3), 209-224. https://doi.org/10.12989/gae.2022.28.3.209.
- Swinton, R.J. and Bergeron, D.M. (2004), Evaluation of a silent killer, the PMN anti-personnel blast mine, https://www.semanticscholar.org/paper/Evaluation-of-a-Silent-Killer%2C-the-PMN-Blast-Mine-Swinton-Bergeron/1ec5f180a8fbda7628cc5d110dddd57b254315bb
- Tai, Y.S. and Tang, C.C. (2006), "Numerical simulation: The dynamic behavior of reinforced concrete plates under normal impact", Theor. Appl. Fract. Mech., 45(2), 117-127. https://doi.org/10.1016/j.tafmec.2006.02.007.
- Tash, F.Y. and Neya, B.N. (2020), "An analytical solution for bending of transversely isotropic thick rectangular plates with variable thickness", Appl. Math. Model., 77, 1582-1602. https://doi.org/10.1243/03093247JSA666.
- Tugrul, A. and Sevim, B. (2017), "Numerically and empirically determination of blasting response of a RC retaining wall under TNT explosive", Adv. Concrete Constr., 5(5), 493-512. https://doi.org/10.12989/acc.2017.5.5.493.
- Uyar, G.G. and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545.
- Wang, J., Liu, F. and Zhang, J. (2019), "Investigation on the propagation mechanism of explosion stress wave in underground mining", Geomech. Eng., 17(3), 295-305. https://doi.org/10.12989/gae.2019.17.3.295.
- Wu, C. and Hao, H. (2005), "Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions", Int. J. Impact Eng., 31(6), 699-717. https://doi.org/10.1016/j.ijimpeng.2004.03.002.
- Yang, G., Wang, G., Lu, W., Wu, L., Yan, P. and Chen, M. (2019), "Experimental and numerical study of damage characteristics of RC slabs subjected to air and underwater contact explosions", Mar. Struct., 66, 242-257. https://doi.org/10.1016/j.marstruc.2019.04.009.
- Zhao, C.F., Chen, J.Y., Wang, Y. and Lu, S.J. (2012), Damage mechanism and response of reinforced concrete containment structure under internal blast loading, 61, 12-20. https://doi.org/10.1016/j.tafmec.2012.08.002.
- Zhao, X., Wang, G., Lu, W., Yan, P., Chen, M. and Zhou, C. (2018). "Damage features of RC slabs subjected to air and underwater contact explosions", Ocean Eng., 147, 531-545. https://doi.org/10.1016/j.oceaneng.2017.11.007.