DOI QR코드

DOI QR Code

Experimental and numerical study on the earth pressure coefficient in a vertical backfilled opening

  • Jian Zheng (Research Institute on Mines and Environment, Department of Civil, Geological and Mining Engineering Ecole Polytechnique de Montreal) ;
  • Li Li (Research Institute on Mines and Environment, Department of Civil, Geological and Mining Engineering Ecole Polytechnique de Montreal)
  • Received : 2022.02.07
  • Accepted : 2023.12.08
  • Published : 2024.02.10

Abstract

Determining lateral earth pressure coefficient (EPC) K is a classic problem in geotechnical engineering. It is a key parameter for estimating the stresses in backfilled openings. For backfilled openings with rigid and immobile walls, some suggested using the Jaky's at-rest earth pressure coefficient K0 while other suggested taking the Rankine's active earth pressure coefficient Ka. A single value was proposed for the entire backfilled opening. To better understand the distributions of stresses and K in a backfilled opening, a series of laboratory tests have been conducted. The horizontal and vertical normal stresses at the center and near the wall of the opening were measured. The values of K at the center and near the wall were then calculated with the measured horizontal and vertical normal stresses. The results show that the values of K are close to Ka at the center and close to K0 near the wall. Furthermore, the experimental results show that the horizontal stress is almost the same at the center and near the wall, indicating a uniform distribution from the center to the wall. It can be estimated by analytical solutions using either Ka or K0. The vertical stress is higher near the center than near the wall. Its analytical estimation can only be done by using Ka at the center and K0 near the wall. Finally, the test results were used to calibrate a numerical model of FLAC2D, which was then used to analyze the influence of column size on the stresses and K in the backfilled opening.

Keywords

Acknowledgement

This work was supported by the Natural Sciences and Engineering Research Council of Canada (402318), Fonds de recherche du Quebec-Nature et Technologies (2015-MI-191676), Mitacs Elevate Postdoctoral Fellowship (IT12573), and the industrial partners of the Research Institute on Mines and Environment (RIME UQATPolytechnique; http://rime-irme.ca/).

References

  1. Ahmadi, A. and Hosseininia, E.S. (2018), "An experimental investigation on stable arch formation in cohesionless granular materials using developed trapdoor test", Powder Technol., 330, 137-146. https://doi.org/10.1016/j.powtec.2018.02.011.
  2. Aubertin, M., Li, L., Arnoldi, S., Belem, T., Bussiere, B., Benzaazoua, M. and Simon, R. (2003), "Interaction between backfill and rock mass in narrow stopes", Soil Rock Am., 1(2), 1157-1164.
  3. Arefnia, A., Dehghanbanadaki, A., Kassim, K.A. and Ahmad, K. (2020), "Stabilization of backfill using TDA material under a footing close to retaining wall", Geomech. Eng., 22(3), 197-206. https://doi.org/10.12989/gae.2020.22.3.197.
  4. ASTM, D3080-11 (2011), Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken, PA, USA.
  5. Berthoz, N., Branque, D., Wong, H. and Subrin, D. (2013), "Stress measurement in partially saturated soils and its application to physical modeling of tunnel excavation", Can. Geotech. J., 50(10), 1077-1087. https://doi.org/10.1139/cgj-2013-0154.
  6. Bishop, A.W. and Henkel, D.J. (1957), The Measurement of Soil Properties in the Triaxial Test, Arnold, London.
  7. Blight, G.E. (1986), "Pressure exerted by materials stored in silos. Part I: Coarse materials", Geotechnique, 36(1), 33-46. https://doi.org/10.1680/geot.1986.36.1.33.
  8. Brooker, E.W. and Ireland, H.O. (1965), "Earth pressure at rest related to stress history", Can. Geotech. J., 2(1), 1-15. https://doi.org/10.1139/t65-001.
  9. Caceres, C. (2005), "Effect of backfill on open stope mining methods", MS thesis, Univ. of British Columbia, Vancouver, B.C.
  10. Canadian Geotechnical Society (2006), Canadian Foundation Engineering Manual. 4th ed., BiTech, Vancouver, Canada.
  11. Chen, R.P., Liu, Q.W., Wu, H.N., Wang, H.L. and Meng, F.Y. (2020), "Effect of particle shape on the development of 2D soil arching", Comput. Geotech., 125, 103662. https://doi.org/10.1016/j.compgeo.2020.103662.
  12. Clayton, C.R.I. and Bica, A.V.D. (1993), "The design of diaphragm type boundary total stress cells", Geotechnique, 43(4), 523-536. https://doi.org/10.1680/geot.1993.43.4.523.
  13. Coulomb, C.A. (1776), "Essai sur une application des regles de maximis et minimis a quelques problemes de statique, relatifs a l'architecture Mem", Acad. Roy. Div. Sav., 7, 343-387.
  14. Das, B.M. (2010), Principles of geotechnical engineering, 7th ed. Cengage Learning, Stanford, USA.
  15. Fahey, M., Helinski, M., Fourie, A. (2009), "Some aspects of the mechanics of arching in backfilled stopes", Can. Geotech. J., 46(11), 1322-1336. https://doi.org/10.1139/T09-063.
  16. Feda, J. (1984), "K0-coefficient of sand in triaxial apparatus", J. Geotech. Engrg., 4(519), 519-524. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:4(519).
  17. Frydman, S. and Keissar, I. (1987), "Earth pressure on retaining walls near rock faces", J. Geotech. Eng., 113(6), 586-599. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:6(586).
  18. Gao, Y., Wang, Y.H. and Su, J.C.P. (2013), "Mechanisms of aginginduced modulus changes in sand under isotropic and anisotropic loading", J. Geotech. Geoenviron. Eng., 139(3), 470-482. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000772.
  19. Gao, Y. and Wang, Y.H. (2014), "Experimental and DEM examinations of K0 in sand under different loading conditions", J. Geotech. Geoenviron. Eng., 140(5), 04014012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001095.
  20. Hong, W.P., Bov, M.L. and Kim, H.M. (2016), "Prediction of vertical pressure in a trench as influenced by soil arching", KSCE J. Civ. Eng., 20(7), 2711-2718. https://doi.org/10.1007/s12205-016-0120-6.
  21. Itasca Consulting Group (2015), Fast Lagrangian Analysis Continua-Version 7.0 User Manual. Minneapolis, Minnesota, USA.
  22. Jahanbakhshzadeh, A., Aubertin, M. and Li, L. (2018a), "Threedimensional stress state in inclined backfilled stopes obtained from numerical simulations and new closed-form solution", Can. Geotech. J., 55(6), 810-828. https://doi.org/10.1139/cgj-2016-0385.
  23. Jahanbakhshzadeh, A., Aubertin, M. and Li, L. (2018b), "Analysis of the stress distribution in inclined backfilled stopes using closed-form solutions and numerical simulations", Geotech. Geol. Eng., 36, 1011-1036. https://doi.org/10.1007/s10706-017-0371-0.
  24. Jahanbakhshzadeh, A., Aubertin, M. and Li, L. (2019), "Influence of pore water pressures on the stress state in inclined backfilled stopes", Proceedings of the 72nd Canadian Geotechnical Conference (GEO 2019), St. John's.
  25. Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Soc. Hung. Arch. Eng., 78(22), 355-358. https://doi.org/10.1139/t93-056.
  26. Jaky, J. (1948), "Pressure in silos", Proceedings of the 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, The Netherlands, June.
  27. Jaouhar, E.M., Zheng, J. and Li, L. (2021), "Experimental study of the evolution of pore water pressure and total stresses during and after the deposition of slurried backfill", Geomech. Eng., 26(5), 499-512. https://doi.org/10.12989/gae.2021.26.5.499.
  28. Jardine, R.J., Zhu, B., Foray, P. and Dalton, C.P. (2009), "Experimental arrangements for investigation of soil stresses developed around a displacement pile", Soils Found., 49(5), 661-673. https://doi.org/10.3208/sandf.49.661.
  29. Jaouhar, E.M., Li, L. and Aubertin, M. (2018), "An analytical solution for estimating the stresses in vertical backfilled stopes based on a circular arc distribution", Geomech. Eng., 15(3), 889-898. https://doi.org/10.12989/gae.2018.15.3.889.
  30. Janssen, H.A. (1895), "Versuche uber Getreidedruck in Silozellen", Zeitschrift Verein Ingenieure, 39, 1045-1049.
  31. Keshavarz, A. and Pooresmaeil, Z. (2016), "Static and seismic active lateral earth pressure coefficients for c-ϕ soils", Geomech. Eng., 10(5), 657-676. http://dx.doi.org/10.12989/gae.2016.10.5.657.
  32. Komornik, A. and Zeitlen, J.G. (1965), "An apparatus for measuring lateral soil swelling pressure in the laboratory", Proceedings of the 6th International Conference on Soil Mechanics and Foundations Engineering, Toronto University Press, Montreal.
  33. Lee, J., Yun, T.S., Lee, D. and Lee, J. (2013), "Assessment of K0 correlation to strength for granular materials", Soils Found., 53(4), 584-595. https://doi.org/10.1016/j.sandf.2013.06.009.
  34. Lee, S.W. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413.
  35. Lirer, S., Flora, A. and Nicotera, M.V. (2011), "Some remarks on the coefficient of earth pressure at rest in compacted sandy gravel", Acta Geotech., 6(1), 1-12. https://doi.org/10.1007/s11440-010-0131-2.
  36. Li, L., Aubertin, M., Simon, R., Bussiere, B. and Belem, T. (2003), "Modeling arching effects in narrow backfilled stopes with FLAC", Proceedings of the 3rd International FLAC Symposium, A. A. Balkema, Rotterdam, Netherlands, May.
  37. Li, L., Aubertin, M. and Belem, T. (2005) "Formulation of a three dimensional analytical solution to evaluate stresses in backfilled vertical narrow openings", Can. Geotech. J., 42(6), 1705-1717. https://doi.org/10.1139/t05-084.
  38. Li, L. and Aubertin, M. (2008), "An improved analytical solution to estimate the stress state in subvertical backfilled stopes", Can. Geotech. J., 45(10), 1487-1496. https://doi.org/10.1139/T08-060.
  39. Li. L. and Aubertin, M. (2009a), "Numerical investigation of the stress state in inclined backfilled stopes", Int. J. Geomech., 9(2), 52-62. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:2(52).
  40. Li. L. and Aubertin, M. (2009b), "Influence of water pressure on the stress state in stopes with cohesionless backfill", Geotech. Geol. Eng., 27, 1-11. https://doi.org/10.1007/s10706-008-9207-2.
  41. Li,. L. and Aubertin, M. (2009c), "A three-dimensional analysis of the total and effective stresses in submerged backfilled stopes", Geotech. Geol. Eng., 27, 559-569. https://doi.org/10.1007/s10706-009-9257-0.
  42. Li, L. and Aubertin, M. (2010), "An analytical solution for the nonlinear distribution of effective and total stresses in vertical backfilled stopes", Geomech. Geoeng., 5(4), 237-245. https://doi.org/10.1080/17486025.2010.497871.
  43. Li, L., Dube, J.S. and Zangeneh-Madar, Z. (2012), "Estimation of total and effective stresses in trenches with inclined walls", Int. J. Geotech. Eng., 6(4), 525-538. https://doi.org/10.3328/IJGE.2012.06.04.525-538.
  44. Li, L., Aubertin, J.D. and Dube, J.S. (2014), "Stress distribution in a cohesionless backfill poured in a silo", Open. Civ. Eng. J., 8(1), 1-8. 10.2174/1874149501408010001.
  45. Li, N.J., Zhou, G.G.D., Hu, H.S., Cui, K.F.E. and Huang, Y. (2023), "Influence of trapping efficiency on the pile-up geometry of granular flows behind slit dams", Eng. Geol., 326, 107333. https://doi.org/10.1016/j.enggeo.2023.107333.
  46. Lirer, S., Flora, A. and Nicotera, M.V. (2011), "Some remarks on the coefficient of earth pressure at rest in compacted sandy gravel", Acta. Geotech., 6(1), 1-12. https://doi.org/10.1007/s11440-010-0131-2.
  47. Liu, G.S., Li, L., Yang, X.C. and Guo, L.J. (2016), "A numerical analysis of the stress distribution in backfilled stopes considering nonplanar interfaces between the backfill and rock walls", Int. J. Geotech. Eng., 10(3), 271-282. https://doi.org/10.1080/19386362.2015.1132123.
  48. Marston, A. (1930), "The theory of external loads on closed conduits in the light of latest experiments", Bulletin No. 96, Iowa Engineering Experiment Station, Ames, Iowa.
  49. McCarth,y D.F. (1988), "Essentials of soil mechanics and foundations: Basic geotechnics", Prentice Hall, Englewood Cliffs, NJ, USA.
  50. Mesri, G., Hayat, T.M. (1993), "The coefficient of earth pressure at rest", Can. Geotech. J., 30(4), 647-666. https://doi.org/10.1139/t93-056.
  51. Pirapakaran, K., Sivakugan, N. (2007a), "Arching within hydraulic fill stopes", Geotech. Geol. Eng., 25(1), 25-35. https://doi.org/10.1007/s10706-006-0003-6.
  52. Pirapakaran, K., Sivakugan, N. (2007b), "A laboratory model to study arching within a hydraulic fill stope", Geotech. Test. J., 30(6), 496-503. https://doi.org/10.1520/GTJ100653.
  53. Rankine, W.J.M. (1857), "On the stability of loose earth", Philos. Trans. R. Soc. London, 147, 9-27. https://doi.org/10.1098/rstl.1857.0003.
  54. Shogaki, T. and Nochikawa, Y. (2004), "Triaxial strength properties of natural deposits at K0 consolidation state using a precision triaxial apparatus with small size specimens", Soils Found., 44(2), 41-52. https://doi.org/10.3208/sandf.44.2_41.
  55. Singh, S., Sivakugan, N. and Shukla, S.K. (2010), "Can soil arching be insensitive to ϕ?", Int. J. Geomech., 10(3), 124-128. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000047.
  56. Sivakugan, N. and Sankha, W. (2013), "Stresses within granular materials contained between vertical walls", Ind. Geotech. J., 43(1), 30-38. https://doi.org/10.1007/s40098-012-0029-z.
  57. Sobhi, M.A., Li, L. and Aubertin, M. (2017), "Numerical investigation of earth pressure coefficient along central line of backfilled stopes", Can. Geotech. J., 54(1), 138-145. https://doi.org/10.1139/cgj-2016-0165.
  58. Suwal, L.P. and Kuwan, R. (2013), "Statically and dynamically measured Poisson's ratio of granular soils on triaxial laboratory specimens", Geotech. Test. J., 36(4), 493-505. 10.1520/GTJ20120108.
  59. Take, W.A. and Valsangkar, A.J. (2001), "Earth pressures on unyielding retaining walls of narrow backfill width", Can. Geotech. J., 38(6), 1220-1230. https://doi.org/10.1139/t01-063.
  60. Talesnick, M. (2005), "Measuring soil contact pressure on a solid boundary and quantifying soil arching", Geotech. Test. J., 28(2), 171-179. https://doi.org/10.1520/GTJ12484.
  61. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil mechanics in engineering practice. John Wiley & Sons, New York.
  62. Ting, C.H., Shukla, S.K. and Sivakugan, N. (2011), "Arching in soils applied to inclined mine stopes", Int. J. Geomech., 11(1), 29-35. https://doi.org/10.1061/ASCEGM.1943-5622.0000067.
  63. Ting, C.H., Sivakugan, N. and Shukla, S.K. (2012), "Laboratory simulation of the stresses within inclined stopes", Geotech. Test. J., 35(2), 280-294. https://doi.org/10.1520/GTJ103693.
  64. Vardhanabhuti, B. and Mesri, G. (2007), "Coefficient of earth pressure at rest for sands subjected to vibration", Can. Geotech. J., 44(10), 1242-1263. https://doi.org/10.1139/T07-032.
  65. Walker, D.M. (1966), "An approximate theory for pressures and arching in hoppers", Chem. Eng. Sci., 21(11), 975-997. https://doi.org/10.1016/0009-2509(66)85095-9.
  66. Walters, J.K. (1973), "A theoretical analysis of stresses in axiallysymmetric hoppers and bunkers", Chem. Eng. Sci., 28(3), 779-789. https://doi.org/10.1016/0009-2509(77)80012-2.
  67. Wanatowski, D. and Chu, J. (2007), "K0 of sand measured by a plane-strain apparatus", Can. Geotech. J., 44(8), 1006-1012. https://doi.org/10.1139/t07-038.
  68. Watabe, Y., Tanaka, M., Tanaka, H. and Tsuchida, T. (2003), "K0-consoliation in a triaxial cell and evaluation of in-situ K0 for marine clays with various characteristics", Soils Found., 43(1), 1-20. https://doi.org/10.3208/sandf.43.1.
  69. Winch, C. (1999), "Geotechnical characteristics and stability of paste backfill at BHP Cannington mine", B.E. Hons Dissertation, James Cook University, Townsville, Australia.
  70. Yamamuro, J.A., Bopp, P.A. and Lade, P.V. (1996), "Onedimensional compression of sands at high pressures", J. Geotech. Engrg., 122(2), 147-154. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(147).
  71. Yang, P.Y., Li, L. and Aubertin, M. (2017), "Stress ratios in entire mine stopes with cohesionless backfill: A numerical study", Minerals, 7(10), 201. https://doi.org/10.3390/min7100201.
  72. Yang, P.Y., Li, L. and Aubertin, M. (2018), "Theoretical and numerical analyses of earth pressure coefficient along the centerline of vertical openings with granular fills", Appl. Sci., 8(10), 1721. https://doi.org/10.3390/app8101721.
  73. Zheng, J. and Li, L. (2020), "Experimental study of the "shortterm" pressures of uncemented paste backfill with different solid contents for barricade design", J. Clean. Prod., 275, 123068. https://doi.org/10.1016/j.jclepro.2020.123068.
  74. Zheng, J., Li, L. and Daviault, M. (2021), "Experimental study on the effectiveness of lubricants in reducing sidewall friction", Int. J. Geomech., 21(5), 06021010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002003.
  75. Zheng, Q.J. and Yu, A.B. (2015), "Finite element investigation of the flow and stress patterns in conical hopper during discharge", Chem. Eng. Sci., 129, 49-57. https://doi.org/10.1016/j.ces.2015.02.022.
  76. Zhu, F.Y. and Clark, J.I. (1994), "The effect of dynamic loading on lateral stress in sand", Can. Geotech. J., 31(2), 308-311. https://doi.org/10.1139/t94-036.
  77. Zhu, J.G., Lu, Y.Y., Jiang, M.J. and Jin, W. (2019), "Development and application of a new-type apparatus for K0 test of soil", Geotech. Test. J., 42(6), 1475-1492. https://doi.org/10.1520/GTJ20180091.