DOI QR코드

DOI QR Code

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Zhen-Dong Cui (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Li Yuan (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology)
  • Received : 2023.10.09
  • Accepted : 2024.01.02
  • Published : 2024.01.25

Abstract

The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

Keywords

Acknowledgement

The work presented in this paper was funded by the National Natural Science Foundation of China (Grant No. 52378381).

References

  1. Bao, X.H., Xia, Z.F., Ye, G.L., Fu, Y.B. and Su, D. (2017), "Numerical analysis on the seismic behavior of a large metro subway tunnel in liquefiable ground", Tunn. Undergr. Sp. Technol., 66, 91-106. https://doi.org/10.1016/j.tust.2017.04.005.
  2. Bobet, A., Fernandez, G., Huo, H.B. and Ramirez, J. (2008), "A practical iterative procedure to estimate seismic-induced deformations of shallow rectangular structures", Can. Geotech. J., 45(7), 923-938. https://doi.org/10.1139/T08-026.
  3. Chen, G.X., Chen, S., Zuo, X., Du, X.L., Qi, C.Z. and Wang, Z.H. (2015), "Shaking-table tests and numerical simulations on a subway structure in soft soil", Soil Dyn. Earthq. Eng., 76, 13-28. https://doi.org/10.1016/j.soildyn.2014.12.012.
  4. Chen, J.N., Xu, C.S., El Naggar, H.M. and Du, X.L. (2023), "Quantification of seismic performance index limits and evaluation of seismic fragility for a new rectangular prefabricated subway station structure", Tunn. Undergr. Sp. Technol., 138. https://doi.org/10.1016/j.tust.2023.105183.
  5. Chen, J.N., Xu, C.S., El Naggar, H.M. and Du, X.L. (2023), "Seismic response analysis of rectangular prefabricated subway station structure", Tunn. Undergr. Sp. Technol., 131. https://doi.org/10.1016/j.tust.2022.104795.
  6. Cheng, X.L. and Sun, Z.G. (2018), "Effects of Burial Depth on the Seismic Response of Subway Station Structure Embedded in Saturated Soft Soil", Adv. Civil Eng., 2018, 1-12. https://doi.org/10.1155/2018/8978467.
  7. Chou, J.C. and Lin, E.G.E. (2020), "Incorporating ground motion effects into Sasaki and Tamura prediction equations of liquefaction-induced uplift of underground structures", Geomech. Eng., 22(1), 25-33. https://doi.org/10.12989/gae.2020.22.1.025.
  8. Cui, Z.D., Huang, M.H., Hou, C.Y. and Yuan, L. (2023), "Seismic deformation behaviors of the soft clay after freezing-thawing", Geomech. Eng., 34(3), 303-316. https://doi.org/10.12989/gae.2023.34.3.303.
  9. Cui, Z.D., Zhang, L.J. and Zhan, Z.X. (2023), "Dynamic shear modulus and damping ratio of saturated soft clay", Geomech. Eng., 32(4), 411-426. https://doi.org/10.12989/gae.2023.32.4.411.
  10. Cui, Z.D., Zhang, L.J. and Zhan, Z.X. (2023), "Seismic response analysis of shallowly buried subway station in inhomogeneous clay site", Soil Dyn. Earthq. Eng., 171, 107986. https://doi.org/10.1016/j.soildyn.2023.107986.
  11. Ebadi-Jamkhaneh, M., Homaioon-Ebrahimi, A., Kontoni, D.P.N. and Shokri-Amiri, M. (2021), "Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction", Geomech. Eng., 27(5), 465-479. https://doi.org/10.12989/gae.2021.27.5.465.
  12. Gao, Z.D., Zhao, M., Huang, J.Q., Wang, W.W. and Du, X.L. (2022), "Effect of soil-rock interface position on seismic response of subway station structure", Tunn. Undergr. Sp. Technol., 119, 104255. https://doi.org/10.1016/j.tust.2021.104255.
  13. Gomes, R.C. (2013), "Effect of stress disturbance induced by construction on the seismic response of shallow bored tunnels", Comput. Geotech., 49, 338-351. https://doi.org/10.1016/j.compgeo.2012.09.007.
  14. Huo, H., Bobet, A., Fernandez, G. and Ramirez, J. (2005), "Load transfer mechanisms between underground structure and surrounding ground: Evaluation of the failure of the Daikai Station", J. Geotech. Geoenviron. Eng., 131(12), 1522-1533. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1522).
  15. Huo, H., Bobet, A., Fernandez, G. and Ramirez, J. (2006), "Analytical solution for deep rectangular structures subjected to far-field shear stresses", Tunn. Undergr. Sp. Technol., 21(6), 613-625. https://doi.org/10.1016/j.tust.2005.12.135.
  16. Huynh, V.Q., Nguyen, T.K. and Nguyen, X.H. (2021), "Seismic analysis of soil-structure interaction: Experimentation and modeling", Geomech. Eng., 27(2), 115-121. https://doi.org/10.12989/gae.2021.27.2.115.
  17. Iida, H., Hiroto, T., Yoshida, N. and Iwafuji, M. (1996), "Damage to Daikai Subway Station", Soils Found., 36, 283-300. https://doi.org/10.3208/sandf.36.Special_283.
  18. Jaber, L., Mezeh, R., Zein, Z., Azab, M. and Sadek, M. (2023), "Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system", Geomech. Eng., 34(4), 437-447. https://doi.org/10.12989/gae.2023.34.4.437.
  19. Jiang, J.W., Hesham El Naggar, M., Xu, C.S. and Du, X.L. (2023), "Effect of parameters associated with soil-to-structure relative stiffness on seismic fragility curves of subway station", Tunn. Undergr. Sp. Technol., 135, 105057. https://doi.org/10.1016/j.tust.2023.105057.
  20. Jimenez, G.A.L., Dias, D. and Jenck, O. (2022), "Seismic loading response of piled systems on soft soils - Influence of the Rayleigh damping", Geomech. Eng., 29(2), 155-170. https://doi.org/10.12989/gae.2021.27.2.115.
  21. Li, Y.T., Di, H.G., Zhou, S.H. and Gong, Q.M. (2021), "Seismic Analysis for Cross Transfer Subway Stations in Soft Soil Stratum", KSCE J. Civil Eng., 25(5), 1732-1745. https://doi.org/10.1007/s12205-021-0634-4.
  22. Lu, C.C. and Hwang, J.H. (2019), "Nonlinear collapse simulation of Daikai Subway in the 1995 Kobe earthquake: Necessity of dynamic analysis for a shallow tunnel", Tunn. Undergr. Sp. Technol., 87, 78-90. https://doi.org/10.1016/j.tust.2019.02.007.
  23. Ma, C., Lu, D.C., Du, X.L., Qi, C.Z. and Zhang, X.Y. (2019), "Structural components functionalities and failure mechanism of rectangular underground structures during earthquakes", Soil Dyn. Earthq. Eng., 119, 265-280. https://doi.org/10.1016/j.soildyn.2019.01.017.
  24. Miao, Y., Zhong, Y., Ruan, B., Cheng, K. and Wang, G.B. (2020), "Seismic response of a subway station in soft soil considering the structure-soil-structure interaction", Tunn. Undergr. Sp. Technol., 106, 103629. https://doi.org/10.1016/j.tust.2020.103629.
  25. Seed, H.B. and Idriss, I.M. (1970), "Soil moduli and damping factors for dynamic response analyses", Report No.UCB/EERC-70/10, Earthquake Engineering Research Center, University of California at Berkeley, Berkeley, California.
  26. Sun, Q.Q., Dias, D. and e Sousa, L.R. (2020), "Soft soil layer-tunnel interaction under seismic loading", Tunn. Undergr. Sp. Technol., 98, 103329. https://doi.org/10.1016/j.tust.2020.103329.
  27. Tang, B.Z., Li, X.J., Chen, S., Zhuang, H.Y. and Chen, H.P. (2020), "Investigations of seismic response to an irregular-section subway station structure located in a soft clay site", Eng. Struct., 217, 110799. https://doi.org/10.1016/j.engstruct.2020.110799.
  28. Tsinidis, G. (2017), "Response characteristics of rectangular tunnels in soft soil subjected to transversal ground shaking", Tunn. Undergr. Sp. Technol., 62, 1-22. https://doi.org/10.1016/j.tust.2016.11.003.
  29. Wang, J.N. and Munfakh, G.A. (2001), "Seismic design of tunnels", WIT Press, 57. https://doi.org/10.2495/ERES010551.
  30. Wang, W.L., Wang, T.T., Su, J.J., Lin, C.H., Seng, C.R. and Huang, T.H. (2001), "Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake", Tunn. Undergr. Sp. Technol., 16, 133-150. https://doi.org/10.1016/S0886-7798(01)00047-5.
  31. Wu, W.F., Ge, S.F. and Yuan, Y. (2022), "Seismic response characteristics of cross interchange metro stations: Transversal response of the three-storey section", Eng. Struct., 252, 113525. https://doi.org/10.1016/j.engstruct.2021.113525.
  32. Wu, W.F., Ge, S.P., Yuan, Y., Ding, W.Q. and Anastasopoulos, I. (2021), "Seismic response of a cross interchange metro station in soft soil: Physical and numerical modeling", Earthq. Eng. Struct. D., 50(9), 2294-2313. https://doi.org/10.1002/eqe.3446.
  33. Xu, Z.G., Du, X.L., Xu, C.S., Hao, H., Bi, K.M. and Jiang, J.W. (2019), "Numerical research on seismic response characteristics of shallow buried rectangular underground structure", Soil Dyn. Earthq. Eng., 116, 242-252. https://doi.org/10.1016/j.soildyn.2018.10.030.
  34. Yu, H.T., Chen, J.T., Bobet, A. and Yuan, Y. (2016), "Damage observation and assessment of the Longxi tunnel during the Wenchuan earthquake", Tunn. Undergr. Sp. Technol., 54, 102-116. https://doi.org/10.1016/j.tust.2016.02.008.
  35. Zhang, C.L. and Cui, Z.D. (2017), "Numerical simulation of dynamic response around shield tunnel in the soft soil area", Mar. Georesour. Geotec., 35(7), 1018-1027. https://doi.org/10.1080/1064119x.2016.1278063.
  36. Zhuang, H.Y., Hu, Z.H., Wang, X.J. and Chen, G.X. (2015), "Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling", Bull. Earthq. Eng., 13(12), 3645-3668. https://doi.org/10.1007/s10518-015-9790-6.
  37. Zhuang, H.Y., Ren, J.W., Miao, Y., Jing, L.G., Yao, E.L. and Xu, C.J. (2019), "Seismic performance levels of a large underground subway station in different soil foundations", J. Earthq. Eng., 25(14), 2808-2833. https://doi.org/10.1080/13632469.2019.1651423.