DOI QR코드

DOI QR Code

A comparative experimental study on the mechanical properties of cast-in-place and precast concrete-frozen soil interfaces

  • Guo Zheng (College of Water Conservancy and Hydropower, Sichuan Agricultural University) ;
  • Ke Xue (College of Water Conservancy and Hydropower, Sichuan Agricultural University) ;
  • Jian Hu (College of Water Conservancy and Hydropower, Sichuan Agricultural University) ;
  • Mingli Zhang (School of Civil Engineering, Lanzhou University of Technology) ;
  • Desheng Li (School of Science, Nanjing University of Science and Technology) ;
  • Ping Yang (College of Water Conservancy and Hydropower, Sichuan Agricultural University) ;
  • Jun Xie (College of Water Conservancy and Hydropower, Sichuan Agricultural University)
  • 투고 : 2023.06.24
  • 심사 : 2023.12.11
  • 발행 : 2024.01.25

초록

The mechanical properties of the concrete-frozen soil interface play a significant role in the stability and service performance of construction projects in cold regions. Current research mainly focuses on the precast concrete-frozen soil interface, with limited consideration for the more realistic cast-in-place concrete-frozen soil interface. The two construction methods result in completely different contact surface morphologies and exhibit significant differences in mechanical properties. Therefore, this study selects silty clay as the research object and conducts direct shear tests on the concrete-frozen soil interface under conditions of initial water content ranging from 12% to 24%, normal stress from 50 kPa to 300 kPa, and freezing temperature of -3℃. The results indicate that (1) both interface shear stress-displacement curves can be divided into three stages: rapid growth of shear stress, softening of shear stress after peak, and residual stability; (2) the peak strength of both interfaces increases initially and then decreases with an increase in water content, while residual strength is relatively less affected by water content; (3) peak strength and residual strength are linearly positively correlated with normal stress, and the strength of ice bonding is less affected by normal stress; (4) the mechanical properties of the cast-in-place concrete-frozen soil interface are significantly better than those of the precast concrete-frozen soil interface. However, when the water content is high, the former's mechanical performance deteriorates much more than the latter, leading to severe strength loss. Therefore, in practical engineering, cast-in-place concrete construction is preferred in cases of higher negative temperatures and lower water content, while precast concrete construction is considered in cases of lower negative temperatures and higher water content. This study provides reference for the construction of frozen soil-structure interface in cold regions and basic data support for improving the stability and service performance of cold region engineering.

키워드

과제정보

This work supported by the Natural Science Foundation (No.42261028; No.41961010) of China.

참고문헌

  1. Ahmadi, S., Ghasemzadeh, H. and Changizi, F. (2021a), "Effects of thermal cycles on microstructural and functional properties of nano treated clayey soil", Eng, Geol,, 280, 105929. https://doi.org/10.1016/j.enggeo.2020.105929.
  2. Ahmadi, S., Ghasemzadeh, H. and Changizi, F. (2021b), "Effects of A low-carbon emission additive on mechanical properties of fine-grained soil under freeze-thaw cycles", J. Cleaner Product., 304, 127157. https://doi.org/10.1016/j.jclepro.2021.127157.
  3. Abdulghader, A.A. and Mohammad, T.R. (2019), "Interface shear strength characteristics of steel piles in frozen clay under varying exposure temperature", Soils Found., 59(6), 2110-2124. https://doi.org/10.1016/j.sandf.2019.11.003.
  4. Bondarenko, G.I. and Sadovskii, A.V. (1975), "Strength and deformability of frozen soil in contact with rock", Int. J. Rock Mech. Min. Sci. Geomech.Abstracts, 13(4), 174-178. https://doi.org/10.1016/0148-9062(76)91967-7.
  5. Biggar, K.W. and Sego, D.C. (1993), "The strength and deformation behaviour of model adfreeze and grouted piples in saline frozen soils", Can. Geotech. J., 30(2), 319-337. https://doi.org/10.1139/t93-027.
  6. Changizi, F., Ghasemzadeh, H. and Ahmadi, S. (2022), "Evaluation of strength properties of clay treated by nanoSiO2 subjected to freeze-thaw cycles", Road Mater. Pavement Design, 23(6), 1221-1238. https://doi.org/10.1080/14680629.2021.1883466.
  7. Dore, G., Niu, F.J. and Brooks, H. (2016), "Adaptation methods for transportation infrastructure built on degrading frozen soil", Frozen Soil Perical. Process., 1919.
  8. Fischer, L., Amann, F., Moore, J.R. and Huggel, C. (2010), "Assessment of periglacial slope stability for the 1988 Tschierva rock avalanche (Piz Morteratsch, Switzerland)", Eng. Geol., 116(1-2), 32-43. https://doi.org/10.1016/j.enggeo.2010.07.005.
  9. Farquharson, L.M., Romanovsky, V.E., Cable, W.L., Walker, D.A., Kokelj, S.V. and Nicolsky, D. (2019), "Climate change drives widespread and rapid thermokarst development in very cold frozen soil in the Canadian high arctic", Geophys. Res. Lett., 46(12). 6681-6689. https://doi.org/10.1029/2019GL082187.
  10. Ghoreishian Amiri, S.A., Grimstad, G. and Kadivar, M. (2022), "An elastic-viscoplastic model for saturated frozen soils", Eur. J. Environ. Civil Eng., 26(7), 2537-2553. https://doi.org/10.1080/19648189.2016.1271361.
  11. Guo, Z.Y., Xu, X.G., Wang, Y.T., Fan, C.X., Sang, A.T., Fan, L.X., Hao, S.Q. and Yan, Z.J. (2023), "Significance analysis of the factors influencing the strength of the frozen soil-structure interface and their interactions in different phase transition zones", Case Studies Therm. Eng., 50, 103475. https://doi.org/10.1016/j.csite.2023.103475.
  12. He, P.F., Ma, W., Mu Y.H., Dong, J.H. and Huang, Y.T. (2018), "Study on freezing strength characteristics and formation mechanism of frozen soil-concrete interface", Transactions of the Chinese Society of Agricultural Eng., 34(23), 127-133. (In Chinese). https://doi.org/10.11975/j.issn.1002-6819.2018.23.015.
  13. He, P.F., Mu, Y.H., Ma, W., Huang, Y.T. and Dong, J.H. (2020), "Testing and modeling of frozen clay-concrete interface behavior based on large-scale shear tests", Adv. Climate Change Res., 12(1), 83-94. https://doi.org/10.1016/j.accre.2020.09.010.
  14. Ji, Y.J., Jia, K., Yu, Q.H., Jin, H.J., Guo, L. and Luo, X.X. (2017), "Direct shear tests of freezing strength at the interface between cast-in-situ concrete and frozen soil", J. Glaciol., 39(1), 86-91. (In Chinese). https://doi.org/10.7522/j.issn.1000-0240.2017.0011.
  15. Kandalai, S., John, N.J. and Patel, A. (2023), "Effects of Climate Change on Geotechnical Infrastructures - state of the art", Environ. Sci. Pollution Res., 30(7), 16878-16904. https://doi.org/10.1007/s11356-022-24788-7.
  16. KO, S.G. and Choi, C.U. (2011), "Experimental study on adfreeze bond strength between frozen sand and aluminium with varying freezing temperature and vertical confining pressure", J. Korean Geotech. Soc., 27(9), 67-76. https://doi.org/10.7843/kgs.2011.27.9.067.
  17. Liu, J.K., Lu, P., Cui, Y.H. and Liu, J.Y. (2014), "Experimental study on direct shear behavior of frozen soil-concrete interface", Cold Reg. Sci. Technol., 104, 1-6. https://doi.org/10.1016/j.coldregions.2014.04.007.
  18. Ladanyi, B. (1995), "Frozen soil - structure interfaces", Studies in Appl. Mech., 42, 3-33. https://doi.org/10.1016/S0922-5382(06)80004-8.
  19. Lyazgin, A.L., Lyashenko, V.S., Ostroborodov, S.V. and Ol'shanskii, V.G. (2004), "Experience in the prevention of frost heave of pipe foundations of transmission towers under northern conditions", Power Technol. Eng., 38(2), 124-126. https://doi.org/10.1023/B:HYCO.0000036365.64731.4c.
  20. Ma, X. H., Xue, K., Liu, J.P., Luo, F., Zheng, T. and Yang, F. (2021). "Western Sichuan interface strength of frozen silty clay - lining law study", J. Arid zone Resour. Environ., 35 (4), 90-96. (In Chinese). https://doi.org/10.13448 /j.carol carroll nki jalre.2021.103. https://doi.org/10.13448/j.carolcarrollnkijalre.2021.103
  21. Park, S., Hwang, C., Choi, H., Son, Y. and Ko, T.Y. (2022), "Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface", Geomech. Eng., 29(3), 281-290. https://doi.org/10.12989/gae.2022.29.3.281.
  22. Sun, T.C., Gao, X.J., Liao, Y.M. and Feng, W.Q. (2021), "Experimental study on adfreezing strength at the interface between silt and concrete", Cold Reg. Sci. Technol., 190(10), 1-11. https://doi.org/10.1016/J.COLDREGIONS.2021.103346.
  23. Tai, B.W., Wu, Q.B., Yue, Z.R. and Xu, H.B. (2021), "Ground temperature and deformation characteristics of anti-freeze-thaw embankments in frozen soil and seasonal frozen ground regions of China", Cold Reg. Sci. Technol., 189, https://doi.org/10.1016/j.coldregions.2021.103331. (Online publication).
  24. Tang, L.Y., Du, Y., Liu, L., Jin, L., Yang, L.J. and Li, G.Y. (2020), "Effect mechanism of unfrozen water on the frozen soilstructure interface during the freezing-thawing process", Geomech. Eng., 22(3), 245-254. https://doi.org/10.12989/gae.2020.22.3.245..
  25. Wen, Z., Yu Q, H., Ma, W., Dong, S.S., Niu, F.J., Wang, D.Y. and Yang, Z. (2013), "The Tibetan silt - glass fiber reinforced plastic contact mechanics characteristics of direct shear test study", Rock Soil Mech., 34(2), 45-50. (In Chinese). https://doi.org/10.16285/sm j.r.2013.S2.004.
  26. Xiong, M., He, P.Y., Mu, Y.H. and Na, X.L. (2021), "Modeling of concrete-frozen soil interface from direct shear test results", Adv. Civil Eng., 2021. https://doi.org/10.1155/2021/7260598.
  27. Zhang, Q., Zhang, J.M., Zhang, B., Zhang, T.Y., Wang, H.L. and Li, Y. (2022), "Influencing factors and constitutive model of interface between warm frozen soil and cast-in-place concrete", J. Central South Univ. (Science and Technology), 53(8), 3021-3030. (In Chinese). https://doi.org/10.11817/j.issn.1672-7207.2022.08.019.
  28. Zhao, Y., Mao, X.S. and Wu, Q. (2022), "Study on shear characteristics of interface between frozen soil and pile during thawing process in frozen soil area", Adv. Civil Eng., 2022. https://doi.org/10.1155/2022/1755538