Acknowledgement
This work supported by the Natural Science Foundation (No.42261028; No.41961010) of China.
References
- Ahmadi, S., Ghasemzadeh, H. and Changizi, F. (2021a), "Effects of thermal cycles on microstructural and functional properties of nano treated clayey soil", Eng, Geol,, 280, 105929. https://doi.org/10.1016/j.enggeo.2020.105929.
- Ahmadi, S., Ghasemzadeh, H. and Changizi, F. (2021b), "Effects of A low-carbon emission additive on mechanical properties of fine-grained soil under freeze-thaw cycles", J. Cleaner Product., 304, 127157. https://doi.org/10.1016/j.jclepro.2021.127157.
- Abdulghader, A.A. and Mohammad, T.R. (2019), "Interface shear strength characteristics of steel piles in frozen clay under varying exposure temperature", Soils Found., 59(6), 2110-2124. https://doi.org/10.1016/j.sandf.2019.11.003.
- Bondarenko, G.I. and Sadovskii, A.V. (1975), "Strength and deformability of frozen soil in contact with rock", Int. J. Rock Mech. Min. Sci. Geomech.Abstracts, 13(4), 174-178. https://doi.org/10.1016/0148-9062(76)91967-7.
- Biggar, K.W. and Sego, D.C. (1993), "The strength and deformation behaviour of model adfreeze and grouted piples in saline frozen soils", Can. Geotech. J., 30(2), 319-337. https://doi.org/10.1139/t93-027.
- Changizi, F., Ghasemzadeh, H. and Ahmadi, S. (2022), "Evaluation of strength properties of clay treated by nanoSiO2 subjected to freeze-thaw cycles", Road Mater. Pavement Design, 23(6), 1221-1238. https://doi.org/10.1080/14680629.2021.1883466.
- Dore, G., Niu, F.J. and Brooks, H. (2016), "Adaptation methods for transportation infrastructure built on degrading frozen soil", Frozen Soil Perical. Process., 1919.
- Fischer, L., Amann, F., Moore, J.R. and Huggel, C. (2010), "Assessment of periglacial slope stability for the 1988 Tschierva rock avalanche (Piz Morteratsch, Switzerland)", Eng. Geol., 116(1-2), 32-43. https://doi.org/10.1016/j.enggeo.2010.07.005.
- Farquharson, L.M., Romanovsky, V.E., Cable, W.L., Walker, D.A., Kokelj, S.V. and Nicolsky, D. (2019), "Climate change drives widespread and rapid thermokarst development in very cold frozen soil in the Canadian high arctic", Geophys. Res. Lett., 46(12). 6681-6689. https://doi.org/10.1029/2019GL082187.
- Ghoreishian Amiri, S.A., Grimstad, G. and Kadivar, M. (2022), "An elastic-viscoplastic model for saturated frozen soils", Eur. J. Environ. Civil Eng., 26(7), 2537-2553. https://doi.org/10.1080/19648189.2016.1271361.
- Guo, Z.Y., Xu, X.G., Wang, Y.T., Fan, C.X., Sang, A.T., Fan, L.X., Hao, S.Q. and Yan, Z.J. (2023), "Significance analysis of the factors influencing the strength of the frozen soil-structure interface and their interactions in different phase transition zones", Case Studies Therm. Eng., 50, 103475. https://doi.org/10.1016/j.csite.2023.103475.
- He, P.F., Ma, W., Mu Y.H., Dong, J.H. and Huang, Y.T. (2018), "Study on freezing strength characteristics and formation mechanism of frozen soil-concrete interface", Transactions of the Chinese Society of Agricultural Eng., 34(23), 127-133. (In Chinese). https://doi.org/10.11975/j.issn.1002-6819.2018.23.015.
- He, P.F., Mu, Y.H., Ma, W., Huang, Y.T. and Dong, J.H. (2020), "Testing and modeling of frozen clay-concrete interface behavior based on large-scale shear tests", Adv. Climate Change Res., 12(1), 83-94. https://doi.org/10.1016/j.accre.2020.09.010.
- Ji, Y.J., Jia, K., Yu, Q.H., Jin, H.J., Guo, L. and Luo, X.X. (2017), "Direct shear tests of freezing strength at the interface between cast-in-situ concrete and frozen soil", J. Glaciol., 39(1), 86-91. (In Chinese). https://doi.org/10.7522/j.issn.1000-0240.2017.0011.
- Kandalai, S., John, N.J. and Patel, A. (2023), "Effects of Climate Change on Geotechnical Infrastructures - state of the art", Environ. Sci. Pollution Res., 30(7), 16878-16904. https://doi.org/10.1007/s11356-022-24788-7.
- KO, S.G. and Choi, C.U. (2011), "Experimental study on adfreeze bond strength between frozen sand and aluminium with varying freezing temperature and vertical confining pressure", J. Korean Geotech. Soc., 27(9), 67-76. https://doi.org/10.7843/kgs.2011.27.9.067.
- Liu, J.K., Lu, P., Cui, Y.H. and Liu, J.Y. (2014), "Experimental study on direct shear behavior of frozen soil-concrete interface", Cold Reg. Sci. Technol., 104, 1-6. https://doi.org/10.1016/j.coldregions.2014.04.007.
- Ladanyi, B. (1995), "Frozen soil - structure interfaces", Studies in Appl. Mech., 42, 3-33. https://doi.org/10.1016/S0922-5382(06)80004-8.
- Lyazgin, A.L., Lyashenko, V.S., Ostroborodov, S.V. and Ol'shanskii, V.G. (2004), "Experience in the prevention of frost heave of pipe foundations of transmission towers under northern conditions", Power Technol. Eng., 38(2), 124-126. https://doi.org/10.1023/B:HYCO.0000036365.64731.4c.
- Ma, X. H., Xue, K., Liu, J.P., Luo, F., Zheng, T. and Yang, F. (2021). "Western Sichuan interface strength of frozen silty clay - lining law study", J. Arid zone Resour. Environ., 35 (4), 90-96. (In Chinese). https://doi.org/10.13448 /j.carol carroll nki jalre.2021.103. https://doi.org/10.13448/j.carolcarrollnkijalre.2021.103
- Park, S., Hwang, C., Choi, H., Son, Y. and Ko, T.Y. (2022), "Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface", Geomech. Eng., 29(3), 281-290. https://doi.org/10.12989/gae.2022.29.3.281.
- Sun, T.C., Gao, X.J., Liao, Y.M. and Feng, W.Q. (2021), "Experimental study on adfreezing strength at the interface between silt and concrete", Cold Reg. Sci. Technol., 190(10), 1-11. https://doi.org/10.1016/J.COLDREGIONS.2021.103346.
- Tai, B.W., Wu, Q.B., Yue, Z.R. and Xu, H.B. (2021), "Ground temperature and deformation characteristics of anti-freeze-thaw embankments in frozen soil and seasonal frozen ground regions of China", Cold Reg. Sci. Technol., 189, https://doi.org/10.1016/j.coldregions.2021.103331. (Online publication).
- Tang, L.Y., Du, Y., Liu, L., Jin, L., Yang, L.J. and Li, G.Y. (2020), "Effect mechanism of unfrozen water on the frozen soilstructure interface during the freezing-thawing process", Geomech. Eng., 22(3), 245-254. https://doi.org/10.12989/gae.2020.22.3.245..
- Wen, Z., Yu Q, H., Ma, W., Dong, S.S., Niu, F.J., Wang, D.Y. and Yang, Z. (2013), "The Tibetan silt - glass fiber reinforced plastic contact mechanics characteristics of direct shear test study", Rock Soil Mech., 34(2), 45-50. (In Chinese). https://doi.org/10.16285/sm j.r.2013.S2.004.
- Xiong, M., He, P.Y., Mu, Y.H. and Na, X.L. (2021), "Modeling of concrete-frozen soil interface from direct shear test results", Adv. Civil Eng., 2021. https://doi.org/10.1155/2021/7260598.
- Zhang, Q., Zhang, J.M., Zhang, B., Zhang, T.Y., Wang, H.L. and Li, Y. (2022), "Influencing factors and constitutive model of interface between warm frozen soil and cast-in-place concrete", J. Central South Univ. (Science and Technology), 53(8), 3021-3030. (In Chinese). https://doi.org/10.11817/j.issn.1672-7207.2022.08.019.
- Zhao, Y., Mao, X.S. and Wu, Q. (2022), "Study on shear characteristics of interface between frozen soil and pile during thawing process in frozen soil area", Adv. Civil Eng., 2022. https://doi.org/10.1155/2022/1755538