DOI QR코드

DOI QR Code

Damage evolution of red-bed soft rock: Progressive change from meso-texture to macro-deformation

  • Guangjun Cui (Institute of Estuarine and Coastal Research/Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, School of Ocean Engineering and Technology, Sun Yat-sen University) ;
  • Cuiying Zhou (Guangdong Engineering Research Centre for Major Infrastructure Safety, Sun Yat-sen University) ;
  • Zhen Liu (Guangdong Engineering Research Centre for Major Infrastructure Safety, Sun Yat-sen University) ;
  • Lihai Zhang (Department of Infrastructure Engineering, The University of Melbourne)
  • Received : 2022.09.24
  • Accepted : 2023.12.06
  • Published : 2024.01.25

Abstract

Many foundation projects are built on red-bed soft rocks, and the damage evolution of this kind of rocks affects the safety of these projects. At present, there is insufficient research on the damage evolution of red-bed soft rocks, especially the progressive process from mesoscopic texture change to macroscopic elastoplastic deformation. Therefore, based on the dual-porosity characteristics of pores and fissures in soft rock, we adopted a cellular automata model to simulate the propagation of these voids in soft rocks under an external load. Further, we established a macro-mesoscopic damage model of red-bed soft rocks, and its reliability was verified by tests. The results indicate that the relationship between the number and voids size conformed to a quartic polynomial, whereas the relationship between the damage variable and damage porosity conformed to a logistic curve. The damage porosity was affected by dual-porosity parameters such as the fractal dimension of pores and fissures. We verified the reliability of the model by comparing the test results with an established damage model. Our research results described the progressive process from mesoscopic texture change to macroscopic elastoplastic deformation and provided a theoretical basis for the damage evolution of these rocks.

Keywords

Acknowledgement

The research is supported by the National Natural Science Foundation of China (NSFC) (Grant Numbers: 42293354, 42293351, 42293355, 42277131, 41977230, 42293350).

References

  1. Abd Rahman, N., Foong, L.K., Lewis, R.W. and Nazir, R. (2018), "Laboratory investigation of LNAPL migration in double-porosity soil under fractured condition using digital image analysis", Transport. Porous Med., 125(3), 521-542. https://doi.org/10.1007/s11242-018-1135-x.
  2. An, D., Baik, S.I., Pan, S.Y., Zhu, M.F., Isheim, D., Krakauer, B.W. and Seidman, D.N. (2019), "Evolution of microstructure and carbon distribution during heat treatments of a dual-phase steel: Modeling and atom-probe tomography experiments", Metall. Mater. Trans. A, 50(1), 436-450. https://doi.org/10.1007/s11661-018-4975-7.
  3. Aubertin, M. and Simon, R. (1997), "A damage initiation criterion for low porosity rocks", Int. J. Rock Mech. Min. Sci., 34(3), 17.e1-17.e15. https://doi.org/10.1016/S1365-1609(97)00145-7.
  4. Benavente, D., Martinez-Martinez, J., Cueto, N. and Garcia-del-Cura, M.A. (2007), "Salt weathering in dual-porosity building dolostones", Eng. Geol., 94(3), 215-226. https://doi.org/10.1016/j.enggeo.2007.08.003.
  5. Bour, O., Davy, P., Darcel, C. and Odling, N. (2002), "A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway)", J. Geophys. Res.-Solid Earth, 107(6), 12. https://doi.org/10.1029/2001jb000176.
  6. Bruning, T., Karakus, M., Nguyen, G.D. and Goodchild, D. (2018), "Experimental study on the damage evolution of brittle rock under triaxial confinement with full circumferential strain control", Rock Mech. Rock Eng., 51(11), 3321-3341. https://doi.org/10.1007/s00603-018-1537-7.
  7. Chen, Y.R.X. and Luo, Y.L. (2018), "Analysis of paths and sources of moisture for the South China rainfall during the presummer rainy season of 1979-2014", J. Meteorol. Res-Prc., 32(5), 744-757. https://doi.org/10.1007/s13351-018-8069-7.
  8. Chen, Z.Q., He, C., Ma, G.Y., Xu, G.W. and Ma, C.C. (2019), "Energy damage evolution mechanism of rock and its application to brittleness evaluation", Rock Mech. Rock Eng., 52(4), 1265-1274. https://doi.org/10.1007/s00603-018-1681-0.
  9. Elsworth, D. and Bai, M. (2020), Continuum representation of coupled flow-deformation response of dual porosity media, Mechanics of Jointed and Faulted Rock.
  10. Fischer, T., Gemmer, M., Liu, L.L. and Su, B.D. (2012), "Change-points in climate extremes in the Zhujiang River Basin, South China, 1961-2007", Climatic Change, 110(3-4), 783-799. https://doi.org/10.1007/s10584-011-0123-8.
  11. Lemaitre J. and Chaboche J.-L. (1990), Mechanics of solid materials, Cambridge University Press, Cambridge.
  12. Li, H., Yang, D.M., Zhong, Z.L., Sheng, Y. and Liu, X.R. (2018a), "Experimental investigation on the micro damage evolution of chemical corroded limestone subjected to cyclic loads", Int. J. Fatigue, 113, 23-32. https://doi.org/10.1016/j.ijfatigue.2018.03.022.
  13. Li, Y.Y., Zhang, S.C. and Zhang, X. (2018b), "Classification and fractal characteristics of coal rock fragments under uniaxial cyclic loading conditions", Arab. J. Geosci., 11(9). https://doi.org/10.1007/s12517-018-3534-2.
  14. Liang, Y.J. (2016), "Rock fracture skeleton tracing by image processing and quantitative analysis by geometry features", J. Geophys. Eng., 13(3), 273-284. https://doi.org/10.1088/1742-2132/13/3/273.
  15. Liu, H.Z., Xie, H.Q., He, J.D., Xiao, M.L. and Zhuo, L. (2017), "Nonlinear creep damage constitutive model for soft rocks", Mech. Time-Depend. Mat., 21(1), 73-96. https://doi.org/10.1007/s11043-016-9319-7.
  16. Liu, S.W., Wan, J.H., Zhou, C.Y., Liu, Z. and Yang, X. (2020), "Efficient beam-column finite-element method for stability design of slender single pile in soft ground mediums", Int. J. Geomech., 20(1). https://doi.org/10.1061/(Asce)Gm.1943-5622.0001542.
  17. Liu, T.Y., Cao, P. and Lin, H. (2014), "Damage and fracture evolution of hydraulic fracturing in compression-shear rock cracks", Theor. Appl. Fract. Mech., 74, 55-63. https://doi.org/10.1016/j.tafmec.2014.06.013.
  18. Liu, W., Niu, S., Tang, H. and Zhou, K. (2021), "Pore structure evolution during lignite pyrolysis based on nuclear magnetic resonance", Case Studies in Therm. Eng., 26, 101125. https://doi.org/10.1016/j.csite.2021.101125.
  19. Margherita, Z., Claudio, C., Laura, E. and Alessandra, N. (2018), "A risk assessment proposal for underground cavities in Hard Soils-Soft Rocks", Int. J. Rock Mech. Min. Sci., 103, 43-54. https://doi.org/10.1016/j.ijrmms.2018.01.024.
  20. Nejati, H.R. and Ghazvinian, A. (2014), "Brittleness effect on rock fatigue damage evolution", Rock Mech. Rock Eng., 47(5), 1839-1848. https://doi.org/10.1007/s00603-013-0486-4.
  21. Nishiyama, S., Ohnishi, Y., Ito, H. and Yano, T. (2014), "Mechanical and hydraulic behavior of a rock fracture under shear deformation", Earth. Planets Space, 66. https://doi.org/10.1186/1880-5981-66-108.
  22. Pan, P.Z., Su, F.S., Chen, H.J., Yan, S.L., Feng, X.T. and Yan, F. (2015), "Uncertainty analysis of rock failure behaviour using an integration of the probabilistic collocation method and elastoplastic cellular automaton", Acta Mech. Solida Sin., 28(5), 536-555. https://doi.org/10.1016/S0894-9166(15)30048-3
  23. Ping, C., Wen, Y.D., Wang, Y.X., Yuan, H.P. and Yuan, B.X. (2016), "Study on nonlinear damage creep constitutive model for high-stress soft rock", Environ. Earth. Sci., 75(10). https://doi.org/10.1007/s12665-016-5699-x.
  24. Wang, C.L., Li, C.F., Chen, Z., Liao, Z.F., Zhao, G.M., Shi, F. and Yu, W.J. (2020a), "Experimental investigation on multi-parameter classification predicting degradation model for rock failure using Bayesian method", Geomech. Eng., 20(2), 113-120. https://doi.org/10.12989/gae.2020.20.2.113.
  25. Wang, J.J., Ma, D., Li, Z.H., Huang, Y.L. and Du, F. (2022), "Experimental investigation of damage evolution and failure criterion on hollow cylindrical rock samples with different bore diameters", Eng. Fract. Mech., 260. https://doi.org/10.1016/j.engfracmech.2021.108182.
  26. Wang, Y., Gao, S.H., Li, C.H. and Han, J.Q. (2020b), "Investigation on fracture behaviors and damage evolution modeling of freeze-thawed marble subjected to increasing-amplitude cyclic loads", Theor. Appl. Fract. Mech., 109. https://doi.org/10.1016/j.tafmec.2020.102679.
  27. Wei, W., Hong, L.J. and Fei, S.P. (2014), "Analyses on CT image of gray rock uniaxial compressive failure process based on MATLAB", Applied Decisions in Area of Mechanical Engineering and Industrial Manufacturing, 577, 1083-1086. https://doi.org/10.4028/www.scientific.net/AMM.577.1083.
  28. Wu, H., Ji, Y.L., Liu, R., Zhang, C.L. and Chen, S. (2018), "Pore structure and fractal characteristics of a tight gas sandstone: A case study of Sulige area in the Ordos Basin, China", Energ Explor Exploit, 36(6), 1438-1460. https://doi.org/10.1177/0144598718764750
  29. Xie, H.P., Li, L.Y., Ju, Y., Peng, R.D. and Yang, Y.M. (2011), "Energy analysis for damage and catastrophic failure of rocks", Sci. China Technol. Sc, 54: 199-209. https://doi.org/10.1007/s11431-011-4639-y
  30. Xie, X., Su, D., Li, X. and Hu, H. (2021), "Research on red-bed soft rock engineering properties and foundation appraisement of construction engineering in Guangzhou", IOP Conference Series: Earth Environmental Science and Technology, 768(1), 012162. https://doi.org/10.1088/1755-1315/768/1/012162.
  31. Yan, F., Feng, X.T., Lv, J.H., Pan, P.Z. and Li, S.J. (2018), "Continuous-discontinuous cellular automaton method for cohesive crack growth in rock", Eng. Fract. Mech., 188, 361-380. https://doi.org/10.1016/j.engfracmech.2017.09.007.
  32. Yan, F., Feng, X.T., Pan, P.Z. and Li, S.J. (2014), "A continuous-discontinuous cellular automaton method for cracks growth and coalescence in brittle material", Acta Mech. Sinica-Prc., 30(1), 73-83. https://doi.org/10.1007/s10409-014-0002-4.
  33. Zhang, L.M., Cui, C.Y., Ma, X.P., Sun, Z.X., Liu, F. and Zhang, K. (2019), "A fractal discrete fracture network model for history matching of naturally fractured reservoirs", Fractals, 27(1). https://doi.org/10.1142/S0218348x19400085.
  34. Zhang, W. and Cai, Y. (2010), Continuum Damage Mechanics and Numerical Applications, Zhejiang University Press.
  35. Zhang, Y.T., Ding, X.L., Huang, S.L., Wu, Y.J. and He, J. (2020), "Strength degradation of a natural thin-bedded rock mass subjected to water immersion and its impact on tunnel stability", Geomech. Eng., 21(1), 63-71. https://doi.org/10.12989/gae.2020.21.1.063.
  36. Zhao, H.B., Zhang H., Li H.H., Wang F.H. and Zhang M. (2017), "Formation and fractal characteristics of main fracture surface of red sandstone under restrictive shear creep", Int. J. Rock Mech. Min. Sci., 98, 181-190. https://doi.org/10.1016/j.ijrmms.2017.07.011.
  37. Zhao, Y. (2010), Multi field coupling in porous media and its engineering response, Science Press, Beijing.
  38. Zhou, C., Cui, G., Yin, H., Yu, L., Xu, G., Liu, Z. and Zhang, L. (2021), "Study of soil expansion characteristics in rainfall-induced red-bed shallow landslides: Microscopic and macroscopic perspectives", PLoS One, 16(1), e0246214. https://doi.org/10.1371/journal.pone.0246214.
  39. Zhou, C.Y., Yu, L., You, F.F., Liu, Z., Liang Y.H. and Zhang L.H. (2020), "Coupled Seepage and Stress Model and Experiment Verification for Creep Behavior of Soft Rock", Int J Geomech, 20(9). https://doi.org/10.1061/(Asce)Gm.1943-5622.0001774
  40. Zhou, C.Y. and Zhu, F.X. (2010), "An elasto-plastic damage constitutive model with double yield surfaces for saturated soft rock", Int. J. Rock Mech. Min. Sci., 47(3), 385-395. https://doi.org/10.1016/j.ijrmms.2010.01.002.