DOI QR코드

DOI QR Code

Developing drilling rate index prediction: A comparative study of RVR-IWO and RVR-SFL models for rock excavation projects

  • Hadi Fattahi (Faculty of Earth Sciences Engineering, Arak University of Technology) ;
  • Nasim Bayat (Faculty of Earth Sciences Engineering, Arak University of Technology)
  • 투고 : 2022.12.09
  • 심사 : 2023.12.06
  • 발행 : 2024.01.25

초록

In the realm of rock excavation projects, precise estimation of the drilling rate index stands as a pivotal factor in strategic planning and cost assessment. This study introduces and evaluates two pioneering computational intelligence models designed for the prognostication of the drilling rate index, a pivotal parameter with direct implications for cost estimation in rock excavation projects. These models, denoted as the Relevance Vector Regression (RVR) optimized with the Invasive Weed Optimization algorithm (IWO) (RVR-IWO model) and the RVR integrated with the Shuffled Frog Leaping algorithm (SFL) (RVR-SFL model), represent a groundbreaking approach to forecasting drilling rate index. The RVR-IWO and RVR-SFL models were meticulously devised to harness the capabilities of computational intelligence and optimization techniques for drilling rate index estimation. This research pioneers the integration of IWO and SFL with RVR, constituting an unprecedented effort in forecasting drilling rate index. The primary objective of this study was to gauge the precision and dependability of these models in forecasting the drilling rate index, revealing significant distinctions between the two. In terms of predictive precision, the RVR-IWO model emerged as the superior choice when compared to the RVR-SFL model, underscoring the remarkable efficacy of the Invasive Weed Optimization algorithm. The RVR-IWO model delivered noteworthy results, boasting a Variance Account for (VAF) of 0.8406, a Mean Squared Error (MSE) of 0.0114, and a Squared Correlation Coefficient (R2) of 0.9315. On the contrary, the RVR-SFL model exhibited slightly lower precision, yielding an MSE of 0.0160, a VAF of 0.8205, and an R2 of 0.9120. These findings serve to highlight the potential of the RVR-IWO model as a formidable instrument for drilling rate index prediction, particularly within the framework of rock excavation projects. This research not only makes a significant contribution to the realm of drilling engineering but also underscores the broader adaptability of the RVR-IWO model in tackling an array of challenges within the domain of rock engineering. Ultimately, this study advances the comprehension of drilling rate index estimation and imparts valuable insights into the practical implementation of computational intelligence methodologies within the realm of engineering projects.

키워드

참고문헌

  1. Akun, M. and Karpuz, C. (2005), "Drillability studies of surfaceset diamond drilling in Zonguldak region sandstones from Turkey", Int. J. Rock Mech. Min. Sci., 42(3), 473-479. https://doi.org/10.1016/j.ijrmms.2004.11.009.
  2. Amiri, B., Fathian, M. and Maroosi, A. (2009), "Application of shuffled frog-leaping algorithm on clustering", Int. J. Adv. Manufact. Technol., 45(1-2), 199-209. https://doi.org/10.1007/s00170-009-1958-2.
  3. Armaghani, D.J., Mohamad, E.T., Momeni, E. and Narayanasamy, M.S. (2014), "An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young's modulus: a study on Main Range granite", Bull. Eng. Geol. Environ., 74(4), 1-19. https://doi.org/10.1007/s10064-014-0687-4.
  4. Asteris, P.G., Mamou, A., Hajihassani, M., Hasanipanah, M., Koopialipoor, M., Le, T.T., Kardani, N. and Armaghani, D.J. (2021), "Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks", Transport. Geotech., 29, 100588. https://doi.org/10.1016/j.trgeo.2021.100588.
  5. Bruland, A. (1998), "Hard rock tunnel boring: Drillability test methods", Project report 13A-98, NTNU Trondheim, 21. 
  6. Dahl, F. (2003), DRI, BWI, CLI standards. NTNU, Angleggsdrift, Trondheim.
  7. Eusuff, M., Lansey, K. and Pasha, F. (2006), "Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization", Eng. Optim., 38(2), 129-154. https://doi.org/10.1080/03052150500384759.
  8. Eusuff, M.M. and Lansey, K.E. (2003), "Optimization of water distribution network design using the shuffled frog leaping algorithm", J. Water Res. Plan Manage., 129(3), 210-225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210).
  9. Fattahi, H. (2016), "Application of improved support vector regression model for prediction of deformation modulus of a rock mass", Eng. Comput., 32(4), 567-580. https://doi.org/10.1007/s00366-016-0433-6.
  10. Fattahi, H. (2018), "Applying Rock Engineering Systems to Evaluate Shaft Resistance of a Pile Embedded in Rock", Geotechnical and Geological Engineering, 36 (5), 3269-3279. http://doi:10.1007/s10706-018-0536-5
  11. Fattahi, H. (2020a), "A new approach for evaluation of seismic slope performance", Int. J. Optim. Civil Eng., 10(2), 261-275. http://ijoce.iust.ac.ir/article-1-433-en.html.
  12. Fattahi, H. (2020b), "A new method for forecasting uniaxial compressive strength of weak rocks", J. Min. Environ., 11(2), 505-515. https://doi.org/10.22044/jme.2020.9328.1835
  13. Fattahi, H. (2021), "Applying optimized relevance vector regression approach for indirect forecasting rock mass deformation modulus", Environ. Earth Sci., 80(22), 1-10. https://doi.org/10.1007/s12665-021-10056-3.
  14. Fattahi, H. and Bazdar, H. (2017), "Applying improved artificial neural network models to evaluate drilling rate index", Tunn. Undergr. Sp. Tech., 70, 114-124. https://doi.org/10.1016/j.tust.2017.07.017.
  15. Fattahi, H., Hasanipanah, M. and Zandy Ilghani, N. (2021), "Investigating correlation of physico-mechanical parameters and P-wave velocity of rocks: A comparative intelligent study", J. Min. Environ., 12(3), 863-875. https://doi:10.22044/jme.2021.11121.2092.
  16. Fattahi, H. and Zandy Ilghani, N. (2021), "Hybrid wavelet transform with artificial neural network for forecasting of shear wave velocity from wireline log data: a case study", Environ. Earth Sci., 80(1), 5. https://doi:10.1007/s12665-020-09320-9.
  17. Huang, L., Asteris, P.G., Koopialipoor, M., Armaghani, D.J. and Tahir, M. (2019), "Invasive weed optimization technique-based ANN to the prediction of rock tensile strength", Appl. Sci., 9(24), 5372. https://doi.org/10.3390/app9245372.
  18. Kahraman, S. (1999), "Rotary and percussive drilling prediction using regression analysis", Int. J. Rock Mech. Min. Sci., 36(7), 981-989. https://doi.org/10.1016/S0148-9062(99)00050-9.
  19. Kahraman, S., Gunaydin, O., Fener, M. and Bilgil, A. (2003), "Correlation between Los Angeles abrasion loss and uniaxial compressive strength", Proceedings of the international symposium on industrial minerals and building stones, Istanbul, Turkey.
  20. Khandelwal, M. and Armaghani, D.J. (2016), "Prediction of drillability of rocks with strength properties using a hybrid GAANN technique", Geotech. Geol. Eng., 34(2), 605-620. https://doi.org/10.1007/s10706-015-9970-9.
  21. Mahmoudi, N., Orouji, H. and Fallah-Mehdipour, E. (2016), "Integration of shuffled frog leaping algorithm and support vector regression for prediction of water quality parameters", Water Resour. Management, 30(7), 2195-2211. https://doi.org/10.1007/s11269-016-1280-3.
  22. Mehrabian, A.R. and Lucas, C. (2006), "A novel numerical optimization algorithm inspired from weed colonization", Ecol. Inform., 1(4), 355-366. https://doi.org/10.1016/j.ecoinf.2006.07.003.
  23. Moayedi, H., Gor, M., Khari, M., Foong, L.K., Bahiraei, M. and Bui, D.T. (2020), "Hybridizing four wise neural-metaheuristic paradigms in predicting soil shear strength", Measurement, 156, 107576. https://doi.org/10.1016/j.measurement.2020.107576.
  24. Moayedi, H., Tien Bui, D. and Kok Foong, L. (2019), "Slope stability monitoring using novel remote sensing based fuzzy logic", Sensors, 19(21), 4636. https://doi.org/10.3390/s19214636.
  25. Mohamad, E.T., Faradonbeh, R.S., Armaghani, D.J., Monjezi, M. and Majid, M.Z.A. (2017), "An optimized ANN model based on genetic algorithm for predicting ripping production", Neural Comput. Appl., 28(1), 393-406. https://doi.org/10.1007/s00521-016-2359-8.
  26. Mohamad, E.T., Li, D., Murlidhar, B.R., Jahed Armaghani, D., Kassim, K.A. and Komoo, I. (2020), "The effects of ABC, ICA, and PSO optimization techniques on prediction of ripping production", Eng. Comput., 36(4), 1355-1370. https://doi.org/10.1007/s00366-019-00770-9.
  27. Nagaraju, T.V., Prasad, C.D. and Murthy, N. (2020), "Invasive weed optimization algorithm for prediction of compression index of lime-treated expansive clays", Soft Comput. Problem Solving, 317-324. https://doi.org/10.1007/978-981-15-0184-5_28.
  28. Nisha, M.G. and Pillai, G. (2013), "Nonlinear model predictive control with relevance vector regression and particle swarm optimization", J. Control Theory App, 11(4), 563-569. https://doi.org/10.1007/s11768-013-2119-6
  29. Parsajoo, M., Armaghani, D.J., Mohammed, A.S., Khari, M. and Jahandari, S. (2021), "Tensile strength prediction of rock material using non-destructive tests: A comparative intelligent study", Transport. Geotech., 31, 100652. https://doi.org/10.1016/j.trgeo.2021.100652.
  30. Ru, Z., Zhao, H. and Zhu, C. (2019), "Probabilistic evaluation of drilling rate index based on a least square support vector machine and Monte Carlo simulation", Bull. Eng. Geol. Environ., 78(5), 3111-3118. https://doi.org/10.1007/s10064-018-1327-1.
  31. Sadique, M.R., Zaid, M. and Alam, M.M. (2022), "Rock tunnel performance under blast loading through finite element analysis", Geotech. Geol. Eng., 40(1), 35-56. https://doi.org/10.1007/s10706-021-01879-9.
  32. Sakiz, U., Kaya, G.U. and Yarali, O. (2021), "Prediction of drilling rate index from rock strength and cerchar abrasivity index properties using fuzzy inference system", Arab J. Geosci., 14(5), 1-16. https://doi.org/10.1007/s12517-021-06647-w.
  33. Tipping, M.E. (2001), "Sparse Bayesian learning and the relevance vector machine", J. Machine Learn Res., 1, 211-244. https://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf?ref=https://githubhelp.com.
  34. Yarali, O. and Soyer, E. (2013), "Assessment of relationships between drilling rate index and mechanical properties of rocks", Tunn. Undergr. Sp. Technol., 33, 46-53. https://doi.org/10.1016/j.tust.2012.08.010.
  35. Yi, P., Kumar, A. and Samuel, R. (2014), "Real-time rate of penetration optimization using the Shuffled Frog Leaping Algorithm (SFLA)", Proceedings of the SPE Intelligent Energy Conference & Exhibition.
  36. Zaid, M. (2021a), "Dynamic stability analysis of rock tunnels subjected to impact loading with varying UCS", Geomech. Eng., 24(6), 505-518. https://doi.org/10.12989/gae.2021.24.6.505.
  37. Zaid, M. (2021b), "Preliminary study to understand the effect of impact loading and rock weathering in tunnel constructed in quartzite", Geotech. Geol. Eng., 1-29. https://doi.org/10.1007/s10706-021-01948-z.
  38. Zaid, M. (2021c), "Three-dimensional finite element analysis of urban rock tunnel under static loading condition: effect of the rock weathering", Geomech. Eng., 25(2), 99-109. https://doi.org/10.12989/gae.2021.25.2.099.
  39. Zaid, M., Sadique, M.R. and Alam, M.M. (2022), "Blast resistant analysis of rock tunnel using abaqus: effect of weathering", Geotech. Geol. Eng., 40(2), 809-832. https://doi.org/10.1007/s10706-021-01927-4.
  40. Zaid, M., Sadique, M.R. and Samanta, M. (2020), "Effect of unconfined compressive strength of rock on dynamic response of shallow unlined tunnel", SN Appl. Sci., 2(12), 2131. https://doi:10.1007/s42452-020-03876-8.
  41. Zhou, J., Chen, C., Armaghani, D.J. and Ma, S. (2020), "Developing a hybrid model of information entropy and unascertained measurement theory for evaluation of the excavatability in rock mass", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01053-4.
  42. Zhou, Y., Luo, Q., Chen, H., He, A. and Wu, J. (2015), "A discrete invasive weed optimization algorithm for solving traveling salesman problem", Neurocomput., 151, 1227-1236. https://doi.org/10.1016/j.neucom.2014.01.078.